Personendetails

DI Dr. techn. Mugdim Bublin

Lehre und Forschung
Stadt Wien Stiftungsprofessur für Artificial Intelligence


T: +43 1 606 68 77-2133
F: +43 1 606 68 77-2139

Raum: B.3.14
Favoritenstraße 226
1100 Wien

Persönlicher Webspace


Lehrveranstaltungen 2022/23

Technik

> Introduction to AI and Data Science ILV
Computer Science and Digital Communications more

Introduction to AI and Data Science ILV

Vortragende: DI Dr. techn. Mugdim Bublin, René Goldschmid, MSc, Dr. Christian Steineder

3SWS
5ECTS

Lehrinhalte

- Mathematical Basics of AI and Data Science- Linear Algebra
- Probability Theory and Statistics
- Optimization

- Introduction to Artificial Intelligence- Problem Solving and Heuristic Search
- Logic and Knowledge Representation
- Planning, Learning and Decision Making under Uncertainty

- Data Science and Machine Learning Fundamentals- Data Collection, Cleaning, Filtering
- Model Building
- Model Evaluation
- Definition of Machine Learning and classes of Machine Learning Algorithms
- Machine Learning Classifiers
- Evaluation of Machine Learning Algorithms

Prüfungsmodus

Immanente Leistungsüberprüfung
- Project work
- Exercises during lectures
- Final written exam

Lehr- und Lernmethode

- Lecture
- Group work (project)
- Practical exercises
- Continuous Discussion and feedback

Sprache

Englisch

> Bachelorarbeit 1 SE
Computer Science and Digital Communications more

Bachelorarbeit 1 SE

Vortragende: DI Dr. techn. Mugdim Bublin, FH-Prof. DI Thomas Fischer, Leon Freudenthaler, BSc MSc, René Goldschmid, MSc, FH-Prof. FH-Hon.Prof. Priv.-Doz. Mag. DI. DI. Dr.techn. Karl Michael Göschka, FH-Prof. Dipl.-Ing. Heimo Hirner, FH-Prof. DI Dr. Igor Miladinovic, Silvia Schmidt, BSc MSc, Bernhard Taufner, BSc, MSc

1SWS
4ECTS

Lehrinhalte

- Selbstständige Bearbeitung einer fachlich relevanten Thematik basierend auf den technischen Themen der Wahlpflichtmodule im 4. und 5. Semester auf wissenschaftlichem Niveau unter Anleitung einer Betreuerin/eines Betreuers
- Ausarbeitung der Bachelorarbeit 1

Prüfungsmodus

Endprüfung
Approbation der Bachelorarbeit

Lehr- und Lernmethode

Durchführung einer praktischen Arbeit und Ausarbeitung als Bachelorarbeit mit Coaching. Studierende präsentieren in regelmäßigen Abständen die aktuelle Fortentwicklung ihrer Bachelorarbeit 1 und stellen diese zur Diskussion.

Sprache

Deutsch

> Wahlfach-Projekt 2 UE
Computer Science and Digital Communications more

Wahlfach-Projekt 2 UE

Vortragende: DI Dr. techn. Mugdim Bublin, FH-Prof. DI Thomas Fischer, Leon Freudenthaler, BSc MSc, FH-Prof. FH-Hon.Prof. Priv.-Doz. Mag. DI. DI. Dr.techn. Karl Michael Göschka, Dipl.-Ing. Georg Mansky-Kummert, FH-Prof. DI Dr. Igor Miladinovic, Silvia Schmidt, BSc MSc, Bernhard Taufner, BSc, MSc

2SWS
5ECTS

Lehrinhalte

Die Studierenden wenden die erworbenen Fähigkeiten an, um ein Projekt koordiniert und strukturiert
abzuwickeln. Dabei definieren sie sich selbständig ein konkretes Teilziel im Projekt. Fundiertes theoretisches Vorgehen wird somit mit praktischer Anwendung kombiniert angewendet. Die Mitarbeit an einem industriellen F&E Projekt bzw. an aktuellen Problemstellung im Rahmen der F&E Tätigkeit der FH ist möglich.

Prüfungsmodus

Endprüfung
Praktisches Projekt in der Kleingruppe

Lehr- und Lernmethode

Gruppenarbeiten, praktische Projektumsetzung begleitet mit Übungen und Coaching.

Sprache

Deutsch

> Introduction to AI and Data Science ILV
Computer Science and Digital Communications more

Introduction to AI and Data Science ILV

Vortragende: DI Dr. techn. Mugdim Bublin, René Goldschmid, MSc, Dr. Christian Steineder

3SWS
5ECTS

Lehrinhalte

- Mathematical Basics of AI and Data Science- Linear Algebra
- Probability Theory and Statistics
- Optimization

- Introduction to Artificial Intelligence- Problem Solving and Heuristic Search
- Logic and Knowledge Representation
- Planning, Learning and Decision Making under Uncertainty

- Data Science and Machine Learning Fundamentals- Data Collection, Cleaning, Filtering
- Model Building
- Model Evaluation
- Definition of Machine Learning and classes of Machine Learning Algorithms
- Machine Learning Classifiers
- Evaluation of Machine Learning Algorithms

Prüfungsmodus

Immanente Leistungsüberprüfung
- Project work
- Exercises during lectures
- Final written exam

Lehr- und Lernmethode

- Lecture
- Group work (project)
- Practical exercises
- Continuous Discussion and feedback

Sprache

Englisch

> Bachelorarbeit 1 SE
Computer Science and Digital Communications more

Bachelorarbeit 1 SE

Vortragende: DI Dr. techn. Mugdim Bublin, Leon Freudenthaler, BSc MSc, René Goldschmid, MSc, FH-Prof. FH-Hon.Prof. Priv.-Doz. Mag. DI. DI. Dr.techn. Karl Michael Göschka, FH-Prof. Dipl.-Ing. Heimo Hirner, FH-Prof.in Mag.a Dr.in Sigrid Schefer-Wenzl, MSc BSc, Silvia Schmidt, BSc MSc, Dr. Christian Steineder, Bernhard Taufner, BSc, MSc, Sebastian Ukleja, BSc

1SWS
4ECTS

Lehrinhalte

- Selbstständige Bearbeitung einer fachlich relevanten Thematik, primär basierend auf den technischen Themen der Wahlpflichtmodule im 4. und 5. Semester auf wissenschaftlichem Niveau unter Anleitung einer Betreuerin/eines Betreuers
- Ausarbeitung der Bachelorarbeit 1

Prüfungsmodus

Endprüfung
Approbation der Bachelorarbeit

Lehr- und Lernmethode

Durchführung einer praktischen Arbeit und Ausarbeitung als Bachelorarbeit mit Coaching. Studierende präsentieren in regelmäßigen Abständen die aktuelle Fortentwicklung ihrer Bachelorarbeit 1 und stellen diese zur Diskussion.

Sprache

Deutsch

> Wahlfach-Projekt 2 UE
Computer Science and Digital Communications more

Wahlfach-Projekt 2 UE

Vortragende: DI Dr. techn. Mugdim Bublin, Leon Freudenthaler, BSc MSc, René Goldschmid, MSc, FH-Prof. FH-Hon.Prof. Priv.-Doz. Mag. DI. DI. Dr.techn. Karl Michael Göschka, FH-Prof. Dipl.-Ing. Heimo Hirner, FH-Prof.in Mag.a Dr.in Sigrid Schefer-Wenzl, MSc BSc, Silvia Schmidt, BSc MSc, Dr. Christian Steineder, Bernhard Taufner, BSc, MSc, Sebastian Ukleja, BSc

2SWS
5ECTS

Lehrinhalte

Die Studierenden wenden die erworbenen Fähigkeiten an, um ein Projekt koordiniert und strukturiert
abzuwickeln. Dabei definieren sie sich selbständig ein konkretes Teilziel im Projekt. Fundiertes theoretisches Vorgehen wird somit mit praktischer Anwendung kombiniert angewendet. Die Mitarbeit an einem industriellen F&E Projekt bzw. an aktuellen Problemstellung im Rahmen der F&E Tätigkeit der FH ist möglich.

Prüfungsmodus

Endprüfung
Praktisches Projekt in der Kleingruppe

Lehr- und Lernmethode

Gruppenarbeiten, praktische Projektumsetzung begleitet mit Übungen und Coaching.

Sprache

Deutsch

> Software Engineering Project 1 UE
Software Design and Engineering more

Software Engineering Project 1 UE

Vortragende: DI Dr. techn. Mugdim Bublin, Leon Freudenthaler, BSc MSc, FH-Prof. FH-Hon.Prof. Priv.-Doz. Mag. DI. DI. Dr.techn. Karl Michael Göschka, FH-Prof. DI Dr. Igor Miladinovic, FH-Prof.in Mag.a Dr.in Sigrid Schefer-Wenzl, MSc BSc

1SWS
5ECTS

Lehrinhalte

Software Engineering Projekt 1 ermöglicht Studierenden, das im Studium erworbene Wissen in einem konkreten Projekt umzusetzen. Im ersten Semester wird ein konkretes Problem analysiert und unter Anwendung von Methoden des Advanced Projektmanagements ein Design für die Software Lösung ausgearbeitet. Diese Lösung wird dann im Software Projekt im zweiten Semester implementiert.
Die LV deckt insbesondere die folgenden Inhalte ab:
- Anwendung vom modernen Projektmanagementmethoden an einem konkreten Projekt
- Formulierung, Klassifizierung und Priorisierung von Requirements für eine konkrete Problemstellung
- Verwendung von UML Diagrammen (Use Case, Klassen-, Aktivitäts- und Sequenzdiagrammen) für Software Design Entwurf, um Requirements zu erfüllen
- Strukturierte und standardisierte Dokumentation von Ergebnissen als ein High Level Design Dokument, das als Basis für die Implementierung dient.

Prüfungsmodus

Modulprüfung

Lehr- und Lernmethode

Gruppenarbeiten, praktische Projektumsetzung begleitet mit Übungen und Coaching

Sprache

Deutsch

> Master Thesis Project UE
Software Design and Engineering more

Master Thesis Project UE

Vortragende: DI Dr. techn. Mugdim Bublin, Leon Freudenthaler, BSc MSc, FH-Prof. FH-Hon.Prof. Priv.-Doz. Mag. DI. DI. Dr.techn. Karl Michael Göschka, FH-Prof. Dipl.-Ing. Heimo Hirner, Dipl.-Ing. Georg Mansky-Kummert, FH-Prof. DI Dr. Igor Miladinovic, FH-Prof.in Mag.a Dr.in Sigrid Schefer-Wenzl, MSc BSc, Bernhard Taufner, BSc, MSc

2SWS
6ECTS

Lehrinhalte

Studierende arbeiten individuell oder in Kleingruppen an Projekten mit Bezug zu Software Design und Software Engineering Technologien und Anwendungen im Kontext hochschulischer F&E-Aktivitäten oder im Rahmen ihrer individuellen Berufstätigkeit. Diese Projekte stellen in weiterer Folge die praxisrelevante Basis für die Masterarbeiten dar.

Prüfungsmodus

Immanente Leistungsüberprüfung
Projektfortschritt, Funktionsnachweis, Projektpräsentation

Lehr- und Lernmethode

-

Sprache

Deutsch-Englisch

> Deep Learning and Virtual Reality Wahlpflichtmodul…
Software Design and Engineering more

Deep Learning and Virtual Reality Wahlpflichtmodul MODUL

3SWS
6ECTS

Publikationen

An der FH Campus Wien verfasste Publikationen von Mugdim Bublin finden Sie in unserer Publikationsdatenbank, ebenso die betreuten Abschlussarbeiten. Alle anderen Publikationen sind im Personal Webspace angeführt.

Studiengänge

Computer Science and Digital Communications

Bachelorstudium, berufsbegleitend

more

Computer Science and Digital Communications

Bachelorstudium, Vollzeit

more

Software Design and Engineering

Masterstudium, berufsbegleitend

more