Molecular Biotechnology

Master, full-time

Overview

The English-language Master's degree program in Molecular Biotechnology is unique in Austria: the emphases of the Master degree program are Molecular Medicine, Human Genetics, Drug Discovery and Immunology. You will investigate the causes of diseases at the cellular level and learn how to develop new treatments and therapies for them. You will learn about the hot topics of big data, personalized data analysis and data security. The degree program is taught at the renowned Vienna BioCenter, one of Europe’s hotspots for life science. The degree program is part of a large national and international network at university level.

Apply now
Contact us

Contact us!

Elisabeth Hablas
Campus Vienna Biocenter
Helmut-Qualtinger-Gasse 2
1030 Vienna
T: +43 1 606 68 77-3500
F: +43 1 606 68 77-3509
biotechnologie@fh-campuswien.ac.at

Office hours
Mon-Fri, 8.00 a.m.-12.00 noon

Stay up to date

Stay up to date!

Duration of course
4 Semester
Final degree
Master of Science in Natural Sciences (MSc)
40Study places
120ECTS
Organisational form
full-time

Application period for academic year 2019/20

1st October 2018 to 24th May 2019

tuition fee / semester:

€ 363,36*

+ ÖH premium + contribution**

 

* Tuition fees for students from third countries € 727 per semester

 

**for additional study expenses
(currently up to €83 depending on degree program and year)

What you can offer

Your interest in breaking new ground in the development of vaccines and other medicines or in areas such as stem cell research and a desire to take on management responsibilities are excellent prerequisites for studying in this degree program. You want to be at the forefront of developing new technologies. You are not interested in a routine job, but want major challenges in research and development. You are a very curious individual who wants to examine things in fine detail and to this end you have the necessary patience to undertake the required steps in order to reach your goals. You know that you can achieve a lot on your own, but in a team you can achieve everything. English as the language of life sciences is part of your everyday working life.

What we offer you

Located at the Campus Vienna BioCenter, you will be able to study and conduct research in state of the art lecture halls and laboratories. We regularly exchange ideas and experience with our partners (numerous research institutions and well-known biotech companies) at this important life sciences center. For example, stem cell researchers from the Vienna BioCenter integrate their latest results directly into their lectures and labs in our degree program. In addition, your education and research benefit from our close partnerships with the University of Vienna and the Medical University of Vienna. We have built a strong international network that provides you with the opportunity to study or conduct research at prestigious universities such as the King's College in London or the Stockholm University in Sweden. Numerous R&D projects in the degree program’s labs offer you the opportunity to participate in application-oriented practical research and to make valuable contacts for your future career.

What makes this degree program special

  • English-language degree program with focus in cancer research, immunology, drug discovery, human genetics and stem cells
  • R&D-Projects in cooperation with Universities and Companies: allergy research, cell-based test systems and cellular signaling pathways 
  • Location: Campus Vienna BioCenter

The Molecular Biotechnology Section is active in medical and pharmaceutical research. Your education benefits from the results of our already established research fields: allergy research, cell-based test systems and cellular signaling pathways. You have the opportunity to participate in in vivo experiments in the fish model system: with the help of the fish it is possible to answer questions about functional genomics research and drug screening. In cooperation with the Medical University of Vienna, we use the fish embryos to explore the regulation of the heat shock pathway after burns to improve their treatment. In allergy research, we focus on food allergies as well as the pathological mechanisms of inhalational allergies, such as pollen allergies, with the help of epithelial cell culture systems. Thus, the degree program is not only a strong foundation for medical and pharmaceutical research, but also for a doctoral program at a university.


What you will learn in the degree program

  • This English language Masters degree program, which is unique in Austria, offers you a balanced mix of molecular-biological subjects as well as “transversal skills”.
  • You will acquire knowledge und practical skills in the fields of molecular medicine and drug discovery.
  • You will follow the main steps of modern drug development, from the first screening until the drug is approved.
  • The degree program also focuses on the following subjects: immunology, neurobiology, stem cells, pathology, as well as signaling pathways, pharmacology, and data analysis.
  • You will improve your employment prospects with practical vocational auxiliary qualifications. You will learn more about innovation and the clinical development of drugs  and will be able to move among the different cultures in the biotech industry. You will learn about bioethics as well as entrepreneurship and strategic business management.
  • During your studies you will refine your English, the international language of applied life sciences. In addition, you will learn interdisciplinary skills that are required in research and in management.

Curriculum*

Lecture SWS ECTS
Bioethics ILV

Bioethics ILV

1 SWS
1 ECTS

Lecture contents

Current (bio-)ethical topics relevant for the life sciences/pharmaceutical/biotech industry (see Learning Outcomes)

Assessment methods

Immanente Leistungsüberprüfung
Continuous assessment

Teaching methods

Student-centred methods: presentations, discussions, written group tasks, blended learning.

Language

English

1 1
Bioinformatics ILV

Bioinformatics ILV

2 SWS
2 ECTS

Lecture contents

Commands in Linux
Individual topics will be taken up and discussed in more detail, e.g:
- biological sequences, sequence comparison
- bioinformatic output formats/files

Assessment methods

Immanente Leistungsüberprüfung
Continuous assessment including assessment of final project

Teaching methods

Lectures, Powerpoint presentation, hands-on exercises and independent work

Language

German

2 2
Clinical Drug Development VO

Clinical Drug Development VO

1 SWS
1 ECTS

Lecture contents

- Case studies: Clinical development of selected drugs (biopharmaceuticals and small-molecule drugs)
- Classes of Pharmaceuticals
- Clinical and epidemiological study designs
- Outcomes and inclusion/exclusion criteria, special populations
- Randomized Controlled Trials (RCTs): Randomization, Blinding and Placebos
- Conduct of clinical trials
- Data analysis and interpretation
- Ethical aspects
- The origins and principles of Good Clinical Practice (GCP)
- International regulations (EMEA, FDA, ICH)
- Interfaces: Regulatory Affairs and Pharmacovigilance, Marketing and Product Life Cycle Management
- Special chapters: Generic drugs and biosimilars, orphan drugs and Advanced Therapy Medicinal Products

Assessment methods

Immanente Leistungsüberprüfung
Grading of participation and in-class exercises. Written exam at the end of the lecture course. Exam includes multiple choice questions as well as open questions.

Teaching methods

Lectures, small group discussions and in-class exercises

Language

German

1 1
General Pathology VO

General Pathology VO

2 SWS
3 ECTS

Lecture contents

Students know and can explain the principles of general pathology, causes and development of pathological processes and diseases at the level of cells, tissues and the whole organism in detail. Students know and are able to describe the courses of illness and symptoms based on morphological alterations and clinicopathological correlations from the systemic/special pathology. In addition, students are familiar with and can explain the systematics and nomenclature of diseases as well as applied diagnostic and therapeutic strategies.

Assessment methods

Endprüfung
Written multiple choice test

Teaching methods

Lecture (Powerpoint presentations, manuscript, glossary, mind maps) / Vorlesung (VL-Unterlagen als Powerpoint-Folien mit Schemata und Bildmaterial, VL-Manuskript, Glossar, Mind-Maps)

Language

German

2 3
Intercultural Teams in Interdisciplinary Projects ILV

Intercultural Teams in Interdisciplinary Projects ILV

1 SWS
1 ECTS

Lecture contents

The content of this integrated course, which is specially designed as the Kick-Off of the Master degree programme prepares the students from different countries, cultural backgrounds, universities, disciplines, and with individual life experiences to work together optimally in interdisciplinary, intercultural and international study and working environments. See the ‘Learning Outcomes' for further details.

Assessment methods

Immanente Leistungsüberprüfung
Continuous assessment

Teaching methods

Student-centred methods: presentations, discussions, individual and group tasks

Language

German

1 1
Medical Genetics Lab UE

Medical Genetics Lab UE

2 SWS
2 ECTS

Lecture contents

Various methods used in genetic analysis are explained and carried out practically. These include the reverse transcriptase polymerase chain reaction for the detection of leukemia associated fusion transcripts, gene amplification and hybridization to immobilized, allele specific oligonucleotides for the detection of mutations in the cystic fibrosis gene, and genotyping of a single nucleotide polymorphism (SNP) in a cohort of patients followed by statistical analysis of the association with disease risk.

Assessment methods

Immanente Leistungsüberprüfung
Immanent assessment of student's understanding of the subject, written laboratory report.

Teaching methods

- The theoretical basis of each of the analyses conducted in the laboratory is explained in a preceding seminar.
- Students conduct genetic analyses according to detailed reports provided by the lecturers.
- Laboratory results are discussed with lecturers at the end of each unit, and are summarized in a report whose structure corresponds to that of a scientific paper.

Language

German

2 2
Medical Genetics VO

Medical Genetics VO

2 SWS
2 ECTS

Lecture contents

The course will be divided in several parts:
- summary of basic principles
- discussion of molecular biological techniques including their limitations
- discussion of several examples for genetic diseases, also in the context of useful and suitable methods (monogenetic, polygenetic, acquired).
Students are encouraged to take the lead to preside over debates and scientific discussions on current scientific and/or ethical topics. At the end of the course, students undertake a quiz where they are encouraged to try to identify the cause of a disease.

Assessment methods

Seminararbeit
Preparation of a written manuscript to a specific topic, evaluation of the participation in discussions.

Teaching methods

Use of Power Point presentation, regular discussions, use of quiz.

Language

German

2 2
Molecular Genetics VO

Molecular Genetics VO

1.5 SWS
2 ECTS

Lecture contents

- Fundamental features of genetics and genetic engineering
- Different levels of regulation of gene expression in pro- and eukaryotes
- Transcriptional regulation (transcription in eukaryotes, transcriptional activation, properties of transcription factors)
- Posttranscriptional regulation (splicing, transport, stability of mRNA, translational control)
- Effects of chromatin (composition, histone modifications, regulation, epigenetics)
- Examples from signalling pathways

Assessment methods

Endprüfung
Written exams

Teaching methods

Lectures with Powerpoint presentations

Language

German

1.5 2
Molecular Immunology VO

Molecular Immunology VO

2 SWS
3 ECTS

Lecture contents

Fundamental concepts of immunity, immunologic tolerance and autoimmunity, immunity to microbes, transplantation immunology, immunity to tumors, hypersensitivity disorders, allergy, congenital and acquired immunodeficiencies, immunotherapy and immunological methods.

Assessment methods

Endprüfung
Written exam at the end of the lecture course. Exam includes multiple choice questions as well as open questions.

Teaching methods

Lectures, interactive discussions between students and lecturer.

Language

German

2 3
Molecular Pathology VO

Molecular Pathology VO

2 SWS
3 ECTS

Lecture contents

In this lecture course, initially the knowledge about the human genome is deepened. Building on that it is pointed out how genetic alterations can lead to disease. Further, methods to the identification of genetic diseases as well as methods for gene therapy are presented. The next part focuses on how aberrant molecular signal transduction can contribute to tumor development and metastasis. This is complemented by presentation of in vivo and in vitro tumor models. The final part is concerned with the topics of tissue printing and cell engineering. This is complemented by presenting novel developments in stem cell biology in normal as well as tumor tissues. Accompanying, in all parts important methods like flow cytometry, migration assays, fluorescence microscopy and blood cell analysis are addressed.

Assessment methods

Endprüfung
Written exam after the end of the course; open questions, no multiple choice.

Teaching methods

Mainly powerpoint slides pointing out additional weblinks to literature sources, web-based texts and video content.

Language

German

2 3
RNA Analysis Lab VO

RNA Analysis Lab VO

3 SWS
3 ECTS

Lecture contents

RNA methods:
- Northern blot (glucose/galactose metabolism in yeast, RNA extraction from yeast, denaturing RNA agarose gel, RNA transfer, specific oligonucleotide hybridization, band detection, quantitative PCR)
- EMSA (in vitro transcription with T7 RNA polymerase, RNA purification, RNA folding, native polyacrylamide gel electrophoresis, RNA staining using methylene blue, detection of RNP complexes)
- RNA stability (temperature dependence, pH dependence, RNAses)

Assessment methods

Immanente Leistungsüberprüfung
Continuous assessment - presence, motivation, participation, practical skills (results), written report.

Teaching methods

Laboratory

Language

German

3 3
RNA VO

RNA VO

1 SWS
2 ECTS

Lecture contents

RNA fundamentals, RNA structure, catalytic RNAs, RNA processing, RNA splicing, RNA editing, riboswitches, RNA applications, non-coding RNAs, RNAi, RNA world, SELEX

Assessment methods

Endprüfung
Written exam at the end of the course.

Teaching methods

Lecture

Language

German

1 2
Scientific Communication I ILV

Scientific Communication I ILV

2 SWS
3 ECTS

Lecture contents

The scientific and ethical content (see the ‘Learning Outcomes' for specific details) of this course aligns with the aims of the Master degree programme, and by working closely with other lecturers compliments the content of the other courses.

Assessment methods

Immanente Leistungsüberprüfung
Continuous assessment

Teaching methods

Student-centred methods: presentations, discussions, written individual and group tasks, blended learning.

Language

English

2 3
Vascular Biology VO

Vascular Biology VO

1 SWS
2 ECTS

Lecture contents

Students are able to decribe the three main areas: hematology, vascular biology and vascular pathology.
Hematology deals with the following topics:
1. erythrocytes (structure, cytoskeleton, hemoglobin, gas exchange, erythrocyte breakdown, iron metabolism, blood groups)
2. leukocytes (morphological leukocyte differentiation)
3. Platelets (structure, activation, adhesion, aggregation, interaction with cells or with the extracellular matrix)
4. Hemostasis (plasmatic coagulation, cell-based model of coagulation, fibrinolytic system, inhibitor systems, blood coagulation tests)
5. Laboratory diagnosis of blood (sample collection, plasma/serum, sample composition/sources of error, clinical chemistry, red/white blood count, blood group serology)
6. Hematological diseases (reactive changes of the erythrocytes/leucocytes/platelets, disorders of hemostasis)
/
Vascular biology deals with:
1. an overview of the vascular system (terms, structure, blood vessel system / lymphatic system)
2. development of the blood vessels (vasculogenesis, angiogenesis, significance and function of specific angiogenic growth factors)
3. the endothelium (biology of the endothelial cell, structure of endothelia, endothelial species)
4. the functions of the endothelium (regulation of vascular tone, endothelium and cell adhesion, endothelial dysfunction)

Vascular pathology describes:
1. the role of the endothelium in the acute inflammatory response (systemically explained by the example of sepsis and locally using the example of "acute lung injury" and
2. atherosclerosis described as a chronic inflammatory vascular disease (risk factors, lipid metabolism, atherogenesis, pathophysiology of unstable plaque / plaque rupture, animal models in atherosclerosis research).

Assessment methods

Endprüfung
Exam; single-choice questions and essay about a topic.

Teaching methods

Reading of primary literature, lectures with power point and flip chart, self-study.

Language

German

1 2

Lecture SWS ECTS
Biologicals VO

Biologicals VO

1 SWS
1 ECTS

Lecture contents

The lecture course “Biologicals” gives an overview over the most important aspects of biotherapeutics (= biologics) which is the fastest growing type of drug gaining more and more importance.
The focus of the course is the discovery research of therapeutic concepts enabled by engineering of biologics, bioprocess development of biologicals, and manufacturing aspects.
Major differences and therapeutic aspects differing between small molecule drugs and biologics are discussed; examples of major classes of biologics are presented as case studies.
Discovery and engineering of therapeutic monoclonal antibodies are discussed in more detail as this class of therapeutics reflects the biggest class amongst many other biologicals.
Approaches and technologies for biopharmaceutical manufacturing and purification will be discussed; major aspects and challenges of protein analytics and physicochemical characterization of biologics will be highlighted.

Assessment methods

Endprüfung
Written exam in the last lecture

Teaching methods

Lecture

Language

German

1 1
Drug Screening VO

Drug Screening VO

1 SWS
1 ECTS

Lecture contents

Students learn how to isolate natural drugs (small molecules) from plants or how to produce biologics. Course content also includes different in vitro screening methods, HCS, HTS (including target-and phenotype-based drug discovery).

Assessment methods

Endprüfung
Final written exam (100%)

Teaching methods

Lecture

Language

German

1 1
In Silico Biology VO

In Silico Biology VO

3 SWS
3 ECTS

Lecture contents

Bioinformatics topics will be addressed and the practical solution of biological problems with bioinformatics tools will be discussed.
The topics include:
- the Human Genome (Genome analysis: SNPs, Variant Discovery)
- biological batabases
- data formats
- protein domains, regulatory patterns
- non-coding RNA prediction
- gene set analysis

Assessment methods

Endprüfung
Written test on the theoretical part (50%), report (50%)

Teaching methods

Lectures, Powerpoint presentation, discussion and independent hands-on exercises with
bioinformatics tools

Language

German

3 3
Infection Biology VO

Infection Biology VO

2 SWS
2 ECTS

Lecture contents

In this lecture course the complex interactions between pathogens and the human host are presented and the molecular, cellular and immunological aspects of this interaction are explained. Strategies developed by bacteria, viruses, fungi and parasites to colonize, invade, survive, reproduce and spread are discussed. The cellular and systemic effects on the host, the host's defence mechanisms and the clinical manifestations of the infectious diseases are shown. Furthermore, diagnostic tests and antimicrobial and antiviral treatment possibilities are explained and the concepts behind the development of novel diagnostic tools, drugs and vaccines for future prevention and therapy of infectious diseases are introduced.

Assessment methods

Endprüfung
Written exam in the end of the lecture course

Teaching methods

Lecture

Language

German

2 2
Innovation in Biotechnology & Start-Ups ILV

Innovation in Biotechnology & Start-Ups ILV

2 SWS
2 ECTS

Lecture contents

Definitions and meaning of Knowledge and the management of knowledge in a knowledge-driven society in general and in the field of Biotechnology in particular with heavy focus on phases of Research and Development (R&D). What is it? Definitions? Perspectives: The human and the data, principles, types, processes, concepts, tools and practice.
From Invention (Research/Technology) to Innovation: The Management of Innovation. Definitions and basics, the process of Innovation Management, the strategic dimension of innovation. Innovation analyses/assessment and organisational aspects of implementation.
From a business idea to a business plan: The story of a business plan and its elements (externally and internally). The business idea, the vision/mission statement and it's reflection in a certain product/service, the targeted market with its characteristics (such as customers, competitors, partners, etc.), the financials, the legal environment, the organisation needed to drive business implementation, the plan for implementation.
The four phases for business-plan development and its implementation: Build hypotheses derived from a business idea, feedback, maturing it through “friendly customers”, incorporate results and show business plan to real customers, to real investors (or funding organisations), if successful, go through foundation process, business start and ongoing improvements.
Useful Tools: Porter Model – 5 Forces, SWOT Analyses; Life-Cycle Analyses; Canvas Business Model Concept, BP-Calculation templates, BP templates; Risk Analyses.

Assessment methods

Gruppenarbeiten
Evaluation of group results (a complete business-plan plus a BP presentation). In addition, individual interviews with students about their results facilitates quality assurance respectively control at an individual level.

Teaching methods

Student-centred methods: project work in fixed groups, presentations, partly: flipped class-room approach, debates, discussions, written tasks.

Language

German

2 2
Intellectual Property & Patent Law VO

Intellectual Property & Patent Law VO

1 SWS
1 ECTS

Lecture contents

• Which forms of protection of intellectual property are available? – trademark, industrial design, copyright, utility model, complementary protection certificate, patent
• History of patent rights
• What is a patent?
– effects of a patent
– what can be patented and what is excluded from patent protection?
– what are the prerequisites for patent application/protection?
– How to define an inventor? Rights and obligations of employee inventors
• From application to patent grant
– structure of a patent application
– application and granting processes
- protective reach and duration
– legal measures
– fees and costs
– where to apply for a patent
• Rights of patent owners and legal measures
• International agreements (EP, PCT), important national differences
• Biopatents – legal framework, important decisions
• Freedom to Operate
• Espacenet and how to use it for patent research
• Patent lawyer - the profession
• Fundamentals in copyright
• Fundamentals in industrial design
• Fundamentals in trademark
• Strategies and decision making
• Important agreements– MTAs, CDAs, licensing contracts
• Licensing contracts - fundamental principles, important clauses
– Franchise

Assessment methods

Immanente Leistungsüberprüfung
Written exam at the end of the course.

Teaching methods

Lectures with interactive elements and discussions, actual cases will be discussed in more detail.

Language

German

1 1
Molecular Pathology Lab UE

Molecular Pathology Lab UE

3 SWS
3 ECTS

Lecture contents

- Various tissue staining techniques; patho-histological evaluation of tumor tissue samples and photographical documentation; characterization of blood by flow cytometry; determination of leucocytes in blood smears; blood sugar measurements in oral glucose-tolerance tests
- Isolation of chicken granulosa cells from pre-ovulatory follicles; fluorescence microscopy of thin sections of follicles; stimulation of transgenic fibroblasts (ApoER2+Dab1 or VLDLR+Dab1) with Reelin followed by detection of Dab1 phosphorylation by immunoprecipitation and Western blotting
- Proliferation kinetics and clonogenic assays; cell migration and wound healing assays; cell migration assays using transwells

Assessment methods

Immanente Leistungsüberprüfung
Immanenter Prüfungscharakter durch permanente Beobachtung der Mitarbeit und des persönlichen Engagements; Qualität der Datenauswertung und Dokumentation im schriftlichen Protokoll

Teaching methods

Practical laboratory course accompanied by introductory seminars

Language

German

3 3
Molecular Virology VO

Molecular Virology VO

1 SWS
2 ECTS

Lecture contents

Replication cycle of important virus families, pathogenetic mechanisms of important viruses, anti-viral strategies, and importance of viruses in molecular biology and medicine.

Assessment methods

Endprüfung
Written examination

Teaching methods

Interactive Lecture

Language

German

1 2
Scientific Communication II ILV

Scientific Communication II ILV

2 SWS
2 ECTS

Lecture contents

The scientific and ethical content (see the ‘Learning Outcomes' for specific details) of this course aligns with the aims of the Master degree programme, and by working closely with other lecturers compliments the content of the other courses.

Assessment methods

Immanente Leistungsüberprüfung
Continuous assessment

Teaching methods

Student-centred methods: presentations, debates, discussions, written individual and group tasks, blended learning.

Language

German

2 2
Signalling Pathways Lab UE

Signalling Pathways Lab UE

3 SWS
3 ECTS

Lecture contents

Methods for the manipulation and the analysis of signalling pathways in cell culture are applied, broadening the knowledge on specific pathways. The applied methods are transient transfection in cell culture, reporter constructs with gfp and luciferase, overexpression of activators/repressors (including RNAi), Western analysis of cellular extracts, analysis of phosphorylation, fluorescence microscopy of labelled proteins and pharmacologic manipulation of the pathways.

Assessment methods

Seminararbeit
Assessment of the work in the laboratory, written exams at the beginning of the laboratory course, discussion of the results after the laboratory course and a written report of the experiments.

Teaching methods

Laboratory work

Language

German

3 3
Signalling Pathways VO

Signalling Pathways VO

1 SWS
2 ECTS

Lecture contents

Important signalling pathways of the cell (e.g. MAP kinase-, GPCR-, Nuclear Hormone Receptor-, NF-kB-, Jak/Stat-, Wnt-, Hedgehog-, Tgfß-, Apoptosis-, PI3K/Akt- and stress pathways) are presented together with their effects on gene expression and other functions of the cell. In addition the crosslinks with other pathways are discussed. Techniques for the analysis of signalling pathways are also presented.

Assessment methods

Endprüfung
Written Exam

Teaching methods

Lectures with Powerpoint presentations, Discussion of selected chapters

Language

German

1 2
Stem Cells Lab UE

Stem Cells Lab UE

2.5 SWS
3 ECTS

Lecture contents

The course teaches the fundamentals of the culture of murine embryonic stem cells and induced stem cells and practical applications. Different cultivation possibilities for ESC and the control of the stability of the cultures in the undifferentiated state will be learned (morphological analysis, alkaline phosphatase assay). Targeted differentiation using the embryoid body (EB) model will be learnt and in addition, experimental investigations will be carried out on how different inhibitors or activators influence differentiation. The formation of EB is analyzed by light microscopy. Using an example, the use of CRISPR/Cas in stem cells will be practiced.

Assessment methods

Immanente Leistungsüberprüfung
Continuous assessment. The grade is comprised of the following sections: attendance, motivation, cooperation, written report

Teaching methods

Practical laboratory course

Language

German

2.5 3
Stem Cells VO

Stem Cells VO

1.5 SWS
2 ECTS

Lecture contents

Reports about stem cells and their usage in biomedical research has raised several important key questions about their capacity to use for stem cell-based therapies to cure diseases. Our course starts with an overview about stem cell biology, where to find stem cell and might there be a different o stem cells isolated from various organisms, such as axolotl. We start to understand how an organsims is developing and where to find stem cells in a human body. For a deeper knowledge in stem cell biology we learn about induced pluripotent stem cells and the development of mini organs/organoids. We discuss the potential usage of stem cells in clinical applications, the importance for society and relevant ethical aspects. Finally, we present latest key news and views about recently published stem cell research breakthroughs.

Assessment methods

Endprüfung
Written exam

Teaching methods

Interactive lectures with discussions using Power point presentation and the blackboard

Language

German

1.5 2

Electives 1 (1 ECTS nach Wahl*)

Lecture SWS ECTS
Electives 1 MODUL 3 3

Electives 2 (2 ECTS nach Wahl*)

Lecture SWS ECTS
Electives 2 MODUL 2 4

Lecture SWS ECTS
Allergies & Autoimmune Diseases VO

Allergies & Autoimmune Diseases VO

1 SWS
2 ECTS

Lecture contents

In this lecture course the molecular and cellular mechanisms of allergies and other hypersensitivity reactions are explained and the symptoms, causes and risk factors of allergic diseases are described. Furthermore, advantages and disadvantages of current diagnostic tests and therapeutic possibilities are discussed and strategies for improvement of diagnosis and therapies of allergies are introduced. This lecture course also explains the pathomechanisms underlying autoimmune disorders and describes determinants (such as genetic predisposition or environmental factors) that influence the development autoimmunity. In addition, the pathogenesis, clinical manifestation and the treatment possibilities of a few selected autoimmune diseases (e.g., Rheumatoid Arthritis, Multiple Sclerosis) are discussed. Furthermore, this lecture course also highlights similarities and differences between allergies and autoimmune disorders.

Assessment methods

Endprüfung
Written exam after the last lecture

Teaching methods

Lecture

Language

English

1 2
Computational Data Analysis ILV

Computational Data Analysis ILV

2 SWS
2 ECTS

Lecture contents

1) Acquire knowledge on selected bioinformatics chapters (Next Generation Sequencing, ChIP-Seq, RNA-Seq), and
2) Application of relevant bioinformatics tools to analyse the associated data.

Assessment methods

Endprüfung
100 % Report in which students have to analyse RNA-Seq Data/ChIP-Seq Data

Teaching methods

Introductions and explanations (lecture), Exercises using the computer

Language

English

2 2
Drug Design VO

Drug Design VO

2 SWS
2 ECTS

Lecture contents

At the center of this course is the drug and its interaction with target proteins. Methods for determination of protein structures and characterization and quantification of protein ligand interactions are presented. In addition strategies and methods for the optimization of these interactions are discussed (lead optimization, rational design). Furthermore, aspects of pharmacokinetics (ADME, prodrugs) are presented. The underlying principles are demonstrated by selected examples.

Assessment methods

Endprüfung
Written exam in the last lecture

Teaching methods

Lectures (Powerpoint presentations and downloads)

Language

English

2 2
Gene Therapy VO

Gene Therapy VO

1 SWS
2 ECTS

Lecture contents

Principles of gene therapy, overview on applications of gene therapy, gene transfer methods, methods for gene transfer estimation, characteristics of different viral vector systems, non-viral vector systems, lenti-/retroviral vectors, adenoviral vectors, adeno-associated viral vectors, applications of gene therapy for different diseases, problems and perspectives.

Assessment methods

Endprüfung
Written examination

Teaching methods

Interactive lecture

Language

German

1 2
Mass Spectrometry ILV

Mass Spectrometry ILV

2 SWS
2 ECTS

Lecture contents

During the "hands on" laboratory every student excises a band containg a protein out of a 4-20% SDS-PAGE (Tris/Glycine) gradient gel. Purification, reduction and alkylation of Cysteines, o/n digestion with Trypsin, next day spotting onto a MALDI target, and generation of a PMF mass spectrum with MALDI-TOF and MSMS spectra of the most intense peptides. Subsequently identification of the protein with database search algorithms.
The theoretical part provides an introduction into the basic principles of proteomics: sample preparation & fractionation (1D and 2D GE, HPLC, CE, SCX RP and affinity chromatography, difficulty of contamination e.g. keratins, SDS, salts). Explanation of the principles of mass spectrometry: ion sources (MALDI, ESI), types of mass spectrometers (TOF, quadrupole, ion trap, FT ICR) and the respective combinations e.g. MALDI-TOF/TOF etc. Resolution R and mass accuracy dm/m (ppm). Improvement of the latter by delayed extraction & reflectron for MALDI-TOF. Isotopic distribution, single and multiple charged ions (ESI). PMF (peptide mass fingerprinting), principles of data base analysis of mass spectra. Collision induced dissociation CID, MS/MS analysis and de novo sequencing.
In addition, an introduction into the methods of quantitative proteomics as well as the analysis of post-translational modifications will be included, as well as an introduction into the application of mass spectrometry (and other technologies) to further analytical questions in addition to proteomics, e.g. metabolomics, lipidomics, drug development and environmental research.
Finally, students present an exposé with their own concepts how to tackle a specific analytical question, using the methodology discussed in the course.

Assessment methods

Immanente Leistungsüberprüfung
Active course participation, results of written test and/or oral examination, evaluation of laboratory report and exposé on potential research project using mass spectrometry

Teaching methods

Wet laboratory work, tutorial on all theoretical contents, video material, data analysis on computer, critical evaluation of data.

Language

English

2 2
Master Project Seminar ILV

Master Project Seminar ILV

1 SWS
1 ECTS

Lecture contents

During this course, the students independently - with the support of the Master's Thesis Coordinator - seek a research project in an inter/national life science research institution or research company, whose content, quality and duration is suitable to write a high-quality master's thesis. Together with the direct supervisor of the research project, the students prepare a project plan for the course of the research project. The plan contains the project goals, the problem definition and the method spectrum to be used.
In small groups, the students present the elaborated plans of their planned research projects to their peer group as well as their motivation to carry out this research project. The group discusses and reflects on the presented problems, strategies and methods and gives their feedback.

Assessment methods

Immanente Leistungsüberprüfung

Teaching methods

Activating Methods: e.g. presentations, discussions …

Language

English

1 1
Molecular Immunology Lab UE

Molecular Immunology Lab UE

3 SWS
3 ECTS

Lecture contents

In the Molecular Immunology laboratory the theoretical immunological knowledge is deepened and practically applied to research problems from the field of allergy research. Students work in small groups of 2 to 3 people on a scientific research question. As a team they have to find the best way to answer the research question, they have to design and perform the experiments using state-of-the-art immunological and molecular biological methods such as ELISAs, SDS-PAGE, immunoblotting, PCR, microscopy and flow cytometry. Finally, each student writes a laboratory report in the format of a scientific publication, in which the background of the research topic is summarized and the experimental work, the results and the conclusion are described.

Assessment methods

Immanente Leistungsüberprüfung
Continuous assessment, active participation, report

Teaching methods

Laboratory

Language

German

3 3
Molecular Neurobiology VO

Molecular Neurobiology VO

2 SWS
3 ECTS

Lecture contents

Students are able to explain membrane physiology, the development of action potentials, electrotonic and saltatoric conduction, synapses, important transmitters and the resulting pharmacological modulation, temporal and spatial integration, pre- and postsynaptic inhibition, as well as, motor functions of the spinal cord, basal ganglia, cerebellum, and cortex including disorders caused by lesions in these regions, the structure and function of the autonomic nervous system including effects on important organs, and the function of the sensory systems.

Assessment methods

Endprüfung
Written exam

Teaching methods

Lecture

Language

English

2 3
Molecular Pharmacology ILV

Molecular Pharmacology ILV

2 SWS
3 ECTS

Lecture contents

Structure and function of drug targets on the molecular level as well as their role as regulators of cell function, the prodrug strategy, and most frequently prescribed drugs for the treatment of human diseases (e.g. background of a disease, mechanism of action, important side effects).

Assessment methods

Endprüfung
Written examination at the end of the course, evaluation of the tasks provided during the course

Teaching methods

Each topic is introduced and necessary information is provided through didactic lectures and e-learning methods. Subsequent lectures focus on the use of this information (e.g. discussion of research papers or research problems, student/poster presentations).

Language

English

2 3
Strategic Business Management ILV

Strategic Business Management ILV

2 SWS
2 ECTS

Lecture contents

The Strategic Business Management course is built on four pillars.
I) Leadership and Management of enterprises/projects for Industry and/or Academia
The major drivers for modern business management are addressed (innovation, globalisation, market dynamic, etc.). From there, the difference of management and leadership will be explained. Build on fundamentals of systemic thinking, reflected for the background of complexity, innovation and change, the differences of working “on a system” (leadership) and working “in a system” (management) will be explained and discussed. Pros/Cons will be elaborated for different environments. The different traditional management styles will be enhanced by leadership approaches and mapped to leading people (individuals) and organisations (teams) in a dynamic branch.
II) Strategic Thinking – Strategy Development (Strategic Concepts – from Vision/Mission to Strategy) and its Elements in a Holistic Approach
A company's identity through vision, mission and corporate culture as framework for its strategy is the baseline of this chapter. A vision and its important function for organisations and its individuals as initial impulse for orientation and order, as success driving function for alignment and motivation will be explored. The effectiveness of visions in the sense of positioning, top down implementation, targets and continuous communication is analysed. The Porter Model is explained and used to show different strategy types (e.g. product market Strategies (Ansoff), competitive strategies, development strategies).
III) The Operational Perspective of Business Management – Strategy Implementation (Management-system, Framework and Indicators)
The importance, characteristics and elements of management systems are explained and elaborated by analysing different models such as Balanced Scorecard, EFQM Model and/or ISO 9001:2015. It is shown, how a set of policies, processes and its alignment to the organization is targeted to achieve company´s objectives.
IV) Adopted Company – A capstone project, where students apply the learning outcomes by analysing all elements learned in I-III
The strategic analysis of a selected, “adopted” company builds the final capstone of the lecture course. Students analyse all relevant elements of a company (vision, mission, values/culture, strategic approach and goals related research, product portfolio, human resources, market, sales, etc.) and derive strategic recommendations for the company to successfully mature its market position.
The entire course content will be critically addressed by future requirements as well as trends and developments in biotechnology business areas.

Assessment methods

Immanente Leistungsüberprüfung
Evaluation of group results (results of “adopted company” analyses and suggestions). In addition, individual interviews with students about their results facilitates quality assurance respectively control at an individual level.

Teaching methods

Student-centered methods: project work in fixed groups, presentations, partly: flipped class-room approach, debates, discussions, written tasks

Language

English

2 2
Toxicology Lab UE

Toxicology Lab UE

3 SWS
3 ECTS

Lecture contents

The toxicological and therapeutic potential of a small molecule drug will be estimated with a variety of cell based test systems. On the one hand the activating potential of the small molecule on a specific pathway (heat shock response pathway) is analysed and on the other hand possible cytotoxic effects are estimated in a concentration-dependent manner. A broad variety of assays is provided for the students including luciferase reporter assays, Western blot, qPCR, flow cytometry, ELISA and general viability assays. The students themselves select suitable methods.

Assessment methods

Immanente Leistungsüberprüfung
Assessment of the work in the laboratory, written exams at the beginning of the laboratory course, discussion of the results after the laboratory course and a written report of the experiments

Teaching methods

Practical course with independent performance of the experiments.

Language

English

3 3
Tumour Biology VO

Tumour Biology VO

2 SWS
3 ECTS

Lecture contents

This course offers an overview of the changes and disturbances of the correct regulation of the cell cycle progression and of the dysfunction of the induction and execution of the programmed cell death and metabolism which occur during the malignant transformation and finally lead to cancer development. Moreover, it includes the description of the most important post-translational modifications of proteins and their role in the functional regulation of distinct proteins involved in the signal transduction. It gives an understanding of the expression and the function of tumour suppressor genes and proto-oncogenes as well as the changes of their regulation (inhibition or constitutive activation) that essentially contribute to cancer development.
This course aims at giving students an overall view of the complexity of the carcinogenesis that encompasses cooperation between a variety of changes, dysfunctions and pathways. This course includes several topics depicting the involvement of genetic and external factors in carcinogenesis. It also gives an understanding of the role and balance between distinct suppressors and oncogenes in angiogenesis and metastasis.

Assessment methods

Endprüfung
Evaluation of regular participation and active cooperation as well as final written examination

Teaching methods

Evaluation of regular participation and active cooperation as well as final written examination

Language

German

2 3

Electives 3 (1 ECTS nach Wahl*)

Lecture SWS ECTS
Electives 3 MODUL 2 2

Electives 4 (1 ECTS nach Wahl*)

Lecture SWS ECTS
Electives 4 MODUL 2 2

Lecture SWS ECTS
Master Exam VO

Master Exam VO

0 SWS
2 ECTS

Lecture contents

The Master's examination represents the final examination of the Master's program before an examination committee of experts. The students present their Master's thesis in the form of a lecture. The students are questioned about their presentation and they defend the contents and conclusions of their Master's thesis. They are asked to cross-connect the topic of their Master's thesis to relevant subjects of the degree program. The students reflect and discuss current research topics from the main fields of the Master's program with the examination committee of experts.

Assessment methods

Endprüfung
For the presentation of the Master's thesis up to 40 points are awarded by the examination committee. Up to 30 points are awarded for the subsequent discussion on the presentation. Up to 30 points are also awarded for the discussion of current research topics from the main areas of the Master's program. The sum of these points gives the overall grade for the Master's examination.

Teaching methods

Activating Methods: presentations and oral exam

Language

English

0 2
Master Thesis VO

Master Thesis VO

0 SWS
28 ECTS

Lecture contents

Writing an English language Master‘s thesis.

Assessment methods

Endprüfung
Assessment by experts.

Teaching methods

Laboratory and literature research

Language

German

0 28

*The curriculum of the Master degree program is currently in revision.

Semester dates
Winter semester: 10th September 2018 to 1st February 2019
Summer semester: 18th February 2019 to 12th July 2019

Number of teaching weeks
18 per semester

Choosing Electives
Electives can only take place when enough students register for them. A selection procedure may take place if the number of interested students exceed the course limit.

Times
Mon. to Fri. all day; some vocational subjects also held on Sat.

Language of instruction
English

Current Curriculum
Here you can find the current curriculum.

Open Courses

You also have the possibility to choose „open courses“ from other degree programs and departments. Registration details may be found here (currently only in German).


Career opportunities

As a graduate, you will mainly be engaged in research and development in your future employment. You can undertake a life science PhD at an Austrian or international university. You are qualified to lead lab or research groups. In addition, you have the entrepreneurial expertise to set up your own start-up. You will work in the following industries and sectors:

  • Industry (Pharma, Biotech, Medtech, Food industry, etc.)
  • Medical research (e.g. tumor biology, vaccine development, degenerative diseases)
  • Research and development departments of established pharmaceutical (life science) companies as well as biotech start-ups
  • Universities, non-university research establishments (e.g.: The Austrian Academy of Sciences, Austrian Institute of Technology, etc. ) and Universities of Applied Sciences
  • Analytical laboratories in the industry and clinics
  • Veterinary research and development
  • Government agencies

Admission

Admission requirements

  • Bachelor degree or equivalent similar qualification from an institute of higher education with a total of 180 ECTS credits in the disciplines of molecular biology, biology with a focus on genetics and/or microbiology, biotechnology, pharmacy, medicine, food biotechnology or biomedical sciences with at least:

    • 30 ECTS credits in molecular biology, genetics, cell biology, microbiology, genomics or biotechnology whereby 12 of these ECTS-Credits must be in practical courses, 20 ECTS credits in chemistry (general, analytical, physical, organic, bioorganic, biochemistry), and at least 6 ECTS credits in mathematics, statistics, informatics.
    • This is valid for those degree programs which have already implemented the ECTS system. If the ECTS credits are only slightly below the required number, it will be decided on a case-by-case basis whether the additional ECTS credits can be compensated by additional examinations in order to allow admission to the degree program.)

  • Equivalent certification from abroad - Equivalence is determined by international agreements, validation or in individual cases a decision by the head of the academic section.

The program is conducted entirely in English; students must have English language proficiency at CEFR level C1

  • Students who have obtained their higher education entrance qualification and bachelor's degree in the EU, EEA or Switzerland do not require proof of their English language skills
  • Students who speak English as their first language must prove their nationality, place of birth and length of stay in a country with English as their official language,
  • All other students must provide written proof of their English proficiency, e.g. by a currently valid certification of one of the following tests:
    > Test of English for International Communication (IELTS) 7-9
    > Cambridge English Advanced (CAE)
    > Cambridge English Proficiency (CPE)
    > Test of English for International Communication (TOEIC) 880-990
    > Test of English as a Foreign Language, internet-based test (TOEFLiBT ) 110-120
    > UNICERT (III)

The tests must be passed on application and the IELTS, TOEIC and TOEFL scores must be valid.

Application

There are 40 places available in the Masters degree program in Molecular Biotechnology each year. The ratio of places to applicants is currently around 1:3.

To apply you will require the following documents:

  • Birth certificate
  • Proof of citizenship (e.g. passport)
  • Bachelor/diploma certificate or equivalent certificate from abroad
  • Transcript(s) of records
  • Written proof of your English skills (for applicants outside the EU, EEA and Switzerland)
  • A completed table with the relevant ECTS credits from your previous studies: Biology (30, of which 12 are from practical courses), Chemistry (20), Mathematics (6) - please also as an electronic document.
  • If necessary, the certificate of completion of compulsory military or civil service.

Please note:

It is not possible to save incomplete online applications. You must complete your application in one session. Your online application will be accepted once you have submitted all required documents as well as the signed application form, either by mail or by scanned per e-mail.

The admission process

The admission process consists of a written test in Vienna to assess the knowledge of the applicant at the bachelor level and an interview with the admission committee.

Please note: The admission process will take place in Vienna, Austria!

You will complete a multiple-choice test to assess your knowledge of biology, molecular biology, cell biology, chemistry, mathematics, logic, and English.

Afterwards, you will be interviewed by the admission committee where which you will have the opportunity to present your career, your motivation, your studies and your professional goals.

 

 


Contact

Secretary's office

Elisabeth Hablas
Campus Vienna Biocenter
Helmut-Qualtinger-Gasse 2
1030 Vienna
T: +43 1 606 68 77-3500
F: +43 1 606 68 77-3509
biotechnologie@fh-campuswien.ac.at

Office hours
Mon-Fri, 8.00 a.m.-12.00 noon

Teaching staff and research staff


Cooperations and Campusnetzwerk

We work closely with numerous biotech companies, universities, such as the University of Vienna, and research institutes and have a strong international network. This guarantees you strong contacts for a semester abroad, participation in research and development activities or your professional career. You can find information about our cooperation activities and much more at Campusnetzwerk. It's well worth visiting the site as it may direct you to a new job or interesting event held by our cooperation partners!

Campusnetzwerk