b_BioT02_en

Molecular Biotechnology

Bachelor, full-time

Overview

This natural sciences degree program provides a broad practical training in medical biotechnology. There, molecular biological techniques are used to research causes, diagnosis and treatment of diseases such as cancer. In addition to applications in the medical field, molecular biotechnology is also used in the development of vaccines and active pharmaceutical ingredients. With the help of genetic engineering, cells are manipulated in such a way that they produce therapeutic proteins such as insulin and vaccines. As a graduate, you will be a biotechnological generalist with entrepreneurial skills and as a scientific/technical assistant you will be active in research and development.

Apply now
Contact us

Contact us!

Elisabeth Hablas
Campus Vienna BioCenter
Helmut-Qualtinger-Gasse 2
1030 Wien
T: +43 1 606 68 77-3500
F: +43 1 606 68 77-3509
biotechnologie@fh-campuswien.ac.at

Office hours
Mon-Wed, 8.00 a.m.-12.00 a.m.
Thu, 9.00 a.m.-12.00 a.m. and 1.00 p.m.-6.00 p.m.
Fri, closed

Stay up to date

Stay up to date!

Duration of course
6 Semester
Final degree
Bachelor of Science in Natural Sciences (BSc)
50Study places
180ECTS
Organisational form
full-time

Application period of academic year 2018/19

1st October 2017 to 2nd April 2018

tuition fee / semester:

€ 363,36*

+ ÖH premium + contribution**

 

* Tuition fees for students from third countries € 727 per semester

 

**for additional study expenses
(currently up to €83 depending on degree program and year)

What you can offer

Your strengths lie in biology, chemistry and mathematics. You are interested in natural sciences, medicine and their related technologies. This includes bioinformatics. With a strong spirit of innovation you question existing applications. You want to develop them further and discover new technologies. You want to apply your manual skills in the laboratory to help people. You are a structured thinker and like to examine things extremely closely and you have the patience to take the many necessary steps to reach your findings. You are aware that alone you can achieve a lot, and in a team you can achieve everything. The fact that English is the language of life sciences awakens your linguistic ambition.

What we offer you

Located at the Vienna BioCenter, you will be able to study and conduct research in state of the art lecture halls and laboratories. You will have access to the best equipment in Central Europe, including among other things an S2 laboratory (the second highest security level). We share this important life sciences center with numerous research institutions and well-known biotech companies and maintain an active exchange of knowledge. In addition, your education and research benefit from our close partnerships with the University of Vienna and the Medical University of Vienna. We have built a strong international network that provides you with the opportunity to complete an internship or to study at prestigious universities such as King's College or Imperial College in London, which are among the top 10 universities in the world. Numerous R&D projects in the degree program offer you the opportunity to participate in application-oriented research during an internship and to make valuable contacts for your future career. Practical relevance is also guaranteed at our Campus Lecture evenings, which are open to all and feature contributions from prominent experts.

What makes this degree program special

Through your practice-oriented education, you will learn to develop and apply new recombinant active pharmaceutical agents and vaccines as well as stem-cell and gene therapies for the treatment of diseases such as cancer or Alzheimer's disease. Recombinant proteins are produced biotechnologically by inserting foreign DNA into cells so that they then produce the proteins. Therefore, the degree program focuses on the cell: You will learn the key signaling pathways and processes in detail. Your main interest is the genome.
You will learn how this important part of the cell, which contains all the genetic information of an organism, works in both healthy and diseased systems. In this degree program we guarantee you a private, fully-equipped, state-of-the-art laboratory space and the opportunity to participate in an R&D project of the Department of Molecular Biotechnology or a partner institution as part of an extensive internship in research areas such as allergy research, cell-based test systems and signaling pathways of the cell.


What you will learn in the degree program

The degree program combines comprehensive know-how about natural sciences and technology with quality and process management. You will enjoy an intensive process-oriented education. Your strongly application-oriented education will be rounded out by the fundamentals of economics and law, laboratory courses and seminars.

  • You will deal with general, analytical and organic chemistry, human biology, cell and molecular biology as well as functional genomics. Mathematics and bioinformatics complement your methodical skills.
  • You will acquire management skills in the fields of quality management, good laboratory practice (GLP) and clinical testing.
  • You will acquire the fundamentals of marketing and communication.
  • You will complete extensive laboratory courses in small groups. You will apply the methods of scientific work within the framework of your bachelor’s thesis.

Curriculum

Grundstudium

Lecture SWS ECTS
General Biology VO

General Biology VO

Lector: Univ.-Prof. Dr. Erwin Heberle-Bors

2 SWS
3 ECTS

Lecture contents

Physical (cosmic), chemical, biological, cultural evolution. Darwinian evolution, Creationism, Intelligent Design. Mechanisms and evolutionary forces of evolution, species formation. Structure of procaryotic and eucaryotic cells, hierarchy of life. Origin and history of life on our planet, milestones of evolution: the origin of eucaryotes, the rise of multicellular organisms. The kingdoms of life: Eubacteria, Archaea, Protisten, Fungi, Plantae, Animalia. Evolution of man. Recognition theory (forming hypotheses), ethics, production, relation of biology and biotechnology.

Assessment methods

written exam on the last day of the lecture course.

Teaching methods

frontal teachingPowerpoint presentation, also on intranetblackbord

Language

German

2 3
General Chemistry VO

General Chemistry VO

Lector: Ao. Univ. Prof. Mag.pharm. Dr. Martin Kratzel

2 SWS
3 ECTS

Lecture contents

Atom: fundamental components of atoms, ultimate particles, elements, isotopes
Radioactivity: radioactive decay, radioactive displacement laws, disintegration series
Atom models: Rutherford's model, Bohr's model, orbital model
Periodic system: periods and groups, short and long periods, electronic configuration of elements, generalizations relative to the position in the periodic system
Bond theories (considering the resulting 3D stucture): metallic bonds, ionic bonds, covalent bonds, coordinate covalent bonds
Intermolecular forces, acids and bases
Conservation laws and consequences: stoichiometry, energy and enthalpy, entropy, spontaneity of chemical reactions, redox reactions
States of matter - gases, liquids, solids: rules and laws
Chemical equilibrium, law of mass action.

Assessment methods

Written exam.

Teaching methods

Lecture under support of Microsoft Powerpoint assisted by computer simulations (3D visualisation tools of atoms and molecules)

Language

German

2 3
Analytical Chemistry I LAB

Analytical Chemistry I LAB

Lector: Mag.pharm. Dr. Michaela Böhmdorfer, Mag. Dr. Birgit Hagenauer, Ao.Univ.Prof.Mag.pharm.Dr. Walter Jäger, Christian Mahn, Mag.pharm.Dr. Alexandra Maria Maier-Salamon, Bettina Pachmann, Mag.pharm Stefan Poschner, Konstantin Sterlini

6 SWS
6 ECTS

Lecture contents

Laboratory regulations, labelling of hazardous substances, occupational safety, proper disposal of chemicals
Measures of concentration (mol, molar concentration, relative concentration)
Basic laboratory techniques, writing laboratory protocols
Qualitative analysis of inorganic ion mixtures and inorganic and simple organic salt compounds, nomenclature of simple salts
Quantitative analysis by volumetry (acid-base titration, redox titration, complexometry)
pH and pH determination methods, preparation of buffer solutions
Semi-quantitative analysis of inorganic anions and cations using colorimetric rapid tests

Assessment methods

Course with inherent examination character.

Teaching methods

elaborating methods

6 6
Analytical Chemistry I VO

Analytical Chemistry I VO

Lector: Ao.Univ.Prof.Mag.pharm.Dr. Walter Jäger

1 SWS
1 ECTS

Lecture contents

In several lecture units the theoretical bases of wet-chemical qualitative and quantitative analysis of inorganic and organic samples will be instructed.
The first unit begins with the correct use and execution of element tests. Afterwards the individual detection of anions, cations and inorganic salts will be discussed with special emphasis on reactions and stoichiometry. Apart from the analysis of inorganic samples also first fundamentals of wet-chemical analysis of organic samples will be discussed with special emphasis on the detection of functional organic groups. Additionally, also extraction and separation techniques by using selected practice-relevant organic compounds will be explained.

Assessment methods

written

Teaching methods

The explanation of the theoretical basics takes place via selected examples from the areas of general analytics, environmental analytics, food analytics and medicinal material analytics (Overheads and PowerPoint).

Language

German

1 1
Applied Mathematics I UE

Applied Mathematics I UE

Lector: DI Dr. Ulrich Haböck, Dipl.Ing. Nikolaus Maly

1.5 SWS
1.5 ECTS

Lecture contents

The mathematical topics correspond to those of the lecture.

Assessment methods

For the tutorial, students have to prepare exercises and present them in class. They are evaluated by their constant participation in class and by the final exam.

Teaching methods

Calculating on the board and at the PC, collection of exercises on the internet.

Language

German

1.5 1.5
Applied Mathematics I VO

Applied Mathematics I VO

Lector: Dipl.Ing. Nikolaus Maly

1.5 SWS
1.5 ECTS

Lecture contents

Elementary models of population dynamics:
We study the 'deterministic' behaviour of elementary large-ensemble models.

- Exponential growth and its underlying geometric principle, logistic growth, short discussion of the dynamics of non-linear systems (cobweb diagram).
- Matrix models: Levkovich and Leslie models, Eigenvectors and Eigenvalues as tool to determine the asympotic behaviour of linear models.

All models are considered via time-discrete difference equations; the analogy to differnential equations is only sketched.

Assessment methods

Written examination at the end of the semester.

Teaching methods

Lecture with board and overhead. Demonstrations with beamer and notebook.

Language

German

1.5 1.5
Business Studies VO

Business Studies VO

Lector: Dipl.-Kfm. Robert Tilenius

1 SWS
1 ECTS

Lecture contents

- Fundamentals of business administration
-- Definition of basic concepts of business administration
- Strategic management
-- Market environment and competitive situation
-- Corporate objectives
-- Change management
- Marketing management
-- Marketing strategies
-- Operational marketing / Marketing mix
- Human resource management
-- Personal needs and manpower planning
-- Personal development
-- leadership
- Accounting
-- General accounts and balance
-- Management accounting

Assessment methods

- Multiple Choice- Text tasks

Teaching methods

Lectures

Language

German

1 1
Molecular Biology & Genetics I VO

Molecular Biology & Genetics I VO

Lector: Univ.-Prof. Dr. Erwin Heberle-Bors, Mag.a Dr.in Marianne Raith

2 SWS
3 ECTS

Lecture contents

A journey through the cell: What is a gene? What is DNA, hybridization, methods for the analysis of gene expression, including DNA chips. Dynamics of DNA (replication including methods such as PCR and DNA sequencing, DNA repair, recombination), central dogma, structure and function of RNA, transcription, translation, genetic code and the mechanisms of differential gene activity. Mutation. Gene isolation (cloning), basics of forward and reverse genetics, model organisms, genome research.
The genetic jungle: forward genetics (Mendel genetics), Meiosis, recombination, gene mapping. What is the phenotype? Monofactorial inherited diseases and multifactorial diseases. Clinical phenotypes. Deviations from Mendelian inheritence (penetrance, locus heterogeneity, allelic heterogeneity, etc.).
The cell cycle with biochemical structure of DNA, chromatin, nucleosome, DNA-replication including telomere replication, methods like PCR and DNA sequencing, mutation frequencies and DNA repair, individual processes in mitosis, cell cycle control points, cytostatica, regulation by protein kinases).
The topics of are coordinated with topics of the lecture course "General Biology": evolution including mutation and selection, molecular evolution (rRNA-genes), endosymbiosis, and others.
This lecture lays the foundation of a lecture of the same name in the 2. Semester, in which the same topics are deepened, with emphasis on molecular-biological methods.

Assessment methods

Written exam on the last day of the course or in coordination with students.24 points, 12 points for a pass.

Teaching methods

LectureCD Learning software by Hoffmann-LaRoche, presentation and self-learning of each student.Powerpoint presentationsBlack boardDownloads

2 3
Scientific Communication in English ILV

Scientific Communication in English ILV

Lector: Dr.in Mary Grace Wallis

2 SWS
2 ECTS

Lecture contents

The timetable for this semester will be provided as detailed information sheets and will be discussed during the first lesson.

See also below (Ziele der Lehrveranstaltung).

Assessment methods

Your command of English, both spoken and written, will be continuously assessed during the semester and will be reflected in the final semester mark. Moreover your active participation in the lessons will also contribute to the overall mark.

Teaching methods

Spontaneous and prepared presentations. Brainstormings, Discussions, Debates. ‘Language clinics’. Individual, pair- and group-work.

Language

English

2 2
Social Skills I ILV

Social Skills I ILV

Lector: Monika Frauwallner

1 SWS
1 ECTS

Lecture contents

Presentation and appearance
• personal presentation and effect
• analysis of the target group and purpose
• structure and dramaturgy of a presentation
• visualization and medium-mix

Assessment methods

Your performance will be continuously assessed during the semester and will be reflected in the final semester mark. Moreover your active participation in the lessons will also contribute to the overall mark.

Teaching methods

Lecture, individual and group work, practical exercisesSelf-assessment via exercises• for self reflection and individual application• practical exercises with feedback and analysis

Language

German

1 1
Cell Biology I LAB

Cell Biology I LAB

Lector: Mag. Bernhard Brauner, Stefanie Görgl, BSc MSc, Mag.Dr. Sabine Lampert, Mag. Dr. Ingeborg Lang, Mag. Brigitte Schmidt, Katharina Skoll, Dr. Janek von Byern

1.5 SWS
3 ECTS

Lecture contents

Eucaryotic cells from protista, Plantae, Animales, Funghi alive and prepared.
Procaryotic cells.
Subcellular structures in light mikroskop.
fluorescence microscopy, phase contrast microscopy, flow cytometry, methods of cell analysis.
scanning electron microscopy, transmission electron microscopy.
Preparationmethods for microskopy, staining methods.
Dokumentation of microscopic analysis.

Assessment methods

Course with inherent examination character. Assessment criteria are the continuous personal participation and engagement during the practical courses as well as the quality of lab reports, that have to be done.

Teaching methods

Practical exercise and training with additional demonstrations.

Language

German

1.5 3
Cell Biology I VO

Cell Biology I VO

Lector: Mag.Dr. Sabine Lampert, Dr. Janek von Byern, Ao.Univ.-Prof. Mag.pharm. Dr. Michael Wirth

1.5 SWS
2 ECTS

Lecture contents

Cells - the basic units of life: commons and differences between the major types. Structure of procaryotic and eucaryotic cells. Characteristics of plant and animal cells, of Bacteria and Archaea. Structure and funktion of subcellular components, mitosis in eucaryotic cells.

Examplyfication of the variety of eucaryotic and procaryotic cells, refering to sturctural and functional aspects with focus on tissues and organs of seed plants.

Introduction to different techniques of microscopy and their uses: bright field, dark field, phase contrast, polarization, oil immersion; method for measurement with a light microscope; fluorochrome microscopy, electron microscopy and flow-cytometrie.

Preparation methods and staining techniques for microscopy of eucaryotic cells and DNA. Basic Methods for microscopic analysis of procaryotic cells.
Scientific documentation of microscopic analyses.

Assessment methods

Written exam at the end of the LV about the contents presented during the lecture (see downloads). At least 60% of all points have to be achieved to pass the exam.

Teaching methods

lecture,PowerPoint presentationslecture notes for download

Language

German

1.5 2
Public Law VO

Public Law VO

Lector: MMag. Dr. Florian Böhm-Gratzl, Mag. Dr. Andreas Lehner

2 SWS
2 ECTS

Lecture contents

The lecture gives an introduction to Austrian Public Law. It deals with the structure of the Austrian state and gives an overview of the most important constitutional bodies and their cooperation.

Assessment methods

Final written test

Teaching methods

lecture

Language

German

2 2

Grundstudium

Lecture SWS ECTS
Analytical Chemistry II LAB

Analytical Chemistry II LAB

Lector: Ao. Univ.-Prof. Mag.pharm. Dr. Thomas Erker, DI (FH) Mario Gabriel, Mag.pharm. Dr. Norbert Handler, Mag. pharm. Michael Hintersteininger, Erich Möllner, Mag. pharm. Philipp Schreppel, Dr. Judith Wackerlig

3 SWS
3 ECTS

Lecture contents

Melting point analysis of organic compounds
Detection of the refractive index
Analysis of the elemental composition
Potentiometric titrations
Thin Layer Chromatography
UV/ VIS spectrophotometry
Analysis of structural compounds using chemical reactions
HPLC and Columnchromatography

Assessment methods

The analytical data achieved by the student is the basis of assessment.

Teaching methods

Achieving handling experience by practical use of theoretical knowledge.

Language

German

3 3
Analytical Chemistry II VO

Analytical Chemistry II VO

Lector: Dr. Judith Wackerlig

1 SWS
1 ECTS

Lecture contents

Quantitative Analytical Chemistry

- tasks and instrumentation
- basic analytical techniques
- quantitative analysis (acid-base-, precipitation and redox titrations, complexometry)
- potentiometry, photometry

Assessment methods

Written exam.

Teaching methods

The explanation of the theoretical basics takes place via selected examples from the areas of general analytics, environmental analytics, food analytics and medicinal material analytics (PowerPoint presentation).

Language

German

1 1
Applied Mathematics II ILV

Applied Mathematics II ILV

Lector: DI Dr. Ulrich Haböck, Dipl.Ing. Nikolaus Maly

2.5 SWS
2.5 ECTS

Lecture contents

We discuss various basic mathematical models from population dynamics, population genetics and epidemiology, and develop necessary math skills by exploring these models.

(a) Simulation of Leslie models of real Populations based on empirical data,

(b) Population genetics: Hardy--Weinberg equilibrium of large ensemble population and the contrasting genetic drift model of Wright--Fisher.

Assessment methods

Written examination at the end of the semester, together with an upgrade option due to ambitious effort in exercise class.

Teaching methods

Learning by doing.

Language

German

2.5 2.5
Applied Statistics I UE

Applied Statistics I UE

Lector: Mag. Irene Steiner, Univ.-Prof. Dipl.-Ing. Dr. Werner Timischl

1 SWS
1 ECTS

Lecture contents

Introduction into the "R-package".
Exercises to following topics:
Addition and multiplication rule, conditional probability, Bayes' formula;
Binomial distribution, hypergeometric distribution, normal and log-normal distribution;
arithmetic meand, standard deviation, quartiles, inter quartile range; boxplot, barplot, histogram; estimates and confidence intervals für the mean and standard deviation of nomally distributed variables;
1-sample t-test.

Assessment methods

Assessment by tasks to be prepared and demonstrated in the group.

Teaching methods

Discussion and computing of examples on the PC and at the board.

1 1
Applied Statistics I VO

Applied Statistics I VO

Lector: Univ.-Prof. Dipl.-Ing. Dr. Werner Timischl

1 SWS
1 ECTS

Lecture contents

Probability:
Unconditional and conditional probability; addition and multiplication rule, Bayes' formula; applications.
Probability distributions:
Discrete and continuous random variables; Binomial distribution; Poisson distribution, Hypergeometric distribution, Normal random variables; distribution parameters.
Parameter estimation:
Empirical distributions, univariate statistics (mean, standard deviation, quantiles, interquartile range); sampling distributions, point and interval estimates (mean, variance, probability, Poisson parameter); sample size calculations. Control charts.
Hypothesis testing (1-sample problems):
Alternative and null hypothesis, one and two sided hypotheses, types of errors, power; large sample binomial test, 1-sample t-test; sample size calculations.

Assessment methods

Written examination (exercises for preparation: see course scripts).

Teaching methods

Lecture with case studies; accompanying text to lecture, statistical tables, collection of formulae and course scripts on R for downloading.

1 1
Inorganic Chemistry VO

Inorganic Chemistry VO

Lector: FH-Prof. Dr. Paul Watson

1 SWS
2 ECTS

Lecture contents

1. Systematic chemical nomenclature.
2. The periodic table of the elements and periodicity.
3. Groups 1-18of the periodic table, relationships within the groups as well as with other groups, chemical properties of the elements, their production and importance, important compounds their production and importance.

Assessment methods

Multiple choice exam - content of hand-outs.

Teaching methods

PowerPoint presentation, Handouts, Videos, cloze texts and individual learning. One distance learning unit.

Language

German

1 2
Biochemistry I VO

Biochemistry I VO

Lector: FH-Prof.in Univ.Doz.in Dr.in Ines Swoboda

1 SWS
2 ECTS

Lecture contents

-

Assessment methods

-

Teaching methods

Lecture

Language

German-English

1 2
Methods of DNA analysis VO

Methods of DNA analysis VO

Lector: FH-Prof. Dr. Herbert Wank

1 SWS
2 ECTS

Lecture contents

Biotechnology
recombinant DNA - molecular cloning
restriction enzymes, enzymes used for molecular cloning
plamids - vectors - cloning systems
ligation - transformation
expression plasmids - recombinant protein expression
molecular cloning strategies
bacterial strains for cloning or protein expression

Assessment methods

written Exam

Teaching methods

Lecture

Language

German

1 2
Molecular Biology & Genetics II VO

Molecular Biology & Genetics II VO

Lector: Univ.-Prof. Dr. Erwin Heberle-Bors, Mag.a Dr.in Marianne Raith

2 SWS
3 ECTS

Lecture contents

Gene expression in general and in prokaryotes: RNA-polymerase, promoter-terminator, transcription, translation, antibiotics.
Gene expression in eukaryotes: Genomes, genome sizes, repetitive DNA, mobile genes, reversible chromatin structure: Eukaryotic promoters, RNA-processing. Post-translational modifications: signal peptides, translation at rough ER, protein degradation.
Signal transduction in prokaryotes and eukaryotes: response regulators, different receptors (G-protein-coupled, tyrosin-kinase-coupled, etc.), ion channels, second messengers (cAMP, cGMP, NO, etc.)
Regulation of gene expression in prokaryotes: Lac operon, tryp operon. Transformation, transduction, conjugation.
Viruses: lytic and lysogenic cycle. Influenza virus, HIV.
Principles of gene cloning: restriction enzymes, vectors and hosts (expression in prokaryotes, in yeast, in plants, in mammalian cells).

Assessment methods

Written exam on the last day of the course or in coordination with students.24 points, 12 points for a pass.

Teaching methods

LecturePowerpoint presentationsBlack boardDownloads

Language

German-English

2 3
Organic Chemistry VO

Organic Chemistry VO

Lector: Ao.Univ.-Prof. Dr. Helmut Spreitzer

2 SWS
3 ECTS

Lecture contents

1. Atomic orbitals
2. Types of bonds
3. Mesomeric and inductive effects
4. Types of compounds (carbohydrates, arom. compounds. halogenides, alcohols, phenols, ethers, sulfur comp., aldehydes. ketones, carbonylic acids and derivatives, carbonic acid and derivatives, amines); nomenclature
5. Acids/Bases in organic chemistry
6. Reaction mechanisms
7. Syntheses of heterocycles

Assessment methods

Written tests

Teaching methods

Power-Point-Präsentation; Explanations on the board

Language

German

2 3
Civil Law VO

Civil Law VO

Lector: Dr. and European Attorney Katherine Cohen, Mag. Dr. iur. Christian Knauder, Dr. Barbara Oberhofer, LL.M. (LSE), Univ.-Prof. Dr. Eva Palten

2 SWS
2 ECTS

Lecture contents

Introduction to austrian private law (basically contract law and tort law on beginners level including case studies), company law, employment law and patent law.

Assessment methods

Written exams

Teaching methods

Lectures on an interactive basis, including case studies. You are kindly invited to cooperate!

Language

German

2 2
Scientific Communication in English II ILV

Scientific Communication in English II ILV

Lector: Dr.in Mary Grace Wallis

2 SWS
2 ECTS

Lecture contents

See our Moodle course for detailed information.

Assessment methods

Permanent assessment, 100% attendance required.

Teaching methods

See our Moodle course for detailed information.

Language

English

2 2
Social Skills II ILV

Social Skills II ILV

Lector: Monika Frauwallner

1 SWS
1 ECTS

Lecture contents

Self coaching and communication
• self coaching and motivation
• stress and time-management
• perception and interpretation
• communication analysis

Assessment methods

Your performance will be continuously assessed during the semester and will be reflected in the final semester mark. Moreover your active participation in the lessons will also contribute to the overall mark.

Teaching methods

Lecture, individual and group work, practical exercisesSelf-assessment via exercises• for self reflection and individual application• practical exercises with feedback and analysis

Language

German

1 1
Cell Biology of the Eukaryotes VO

Cell Biology of the Eukaryotes VO

Lector: FH-Prof. Dr. Herbert Wank

2 SWS
3 ECTS

Lecture contents

Structure and function of cellular organelles (Nucleus, Mitochondria, Endoplasmatic Reticulum, Golgi, ect.) and substructures (cytoskeleton).
Composition, properties and functional relevance of biomembranes.
Ion channel and carrier mediated transport of small molecules through membranes.
Protein transport into organelles as well as in and out of cells (endocytosis/secretion).
The cytoskeleton: composition, regulatory proteins and intracellular transport events.
Contact/communication between cells via junctions; the concept of tissues and the extracellular matrix.
Complex processes that integrate several features: propagation of action potential along nerve cells; muscle contraction, energy conversion in mitochondria

Assessment methods

written exam

Teaching methods

Power point presentation

Language

German

2 3
Cell Culture VO

Cell Culture VO

Lector: Mag.a Dr.in Marianne Raith

1 SWS
1 ECTS

Lecture contents

1) Basics of cell- und tissue culture (legal basis, safety levels, requirements and equipment, sterile techniques, contaminations and how to avoid them)
2) The cell and its environment (culture vessels and their treatment, culture conditions)
3) Routine methods for basic handling of cultured cells (medium exchange, subculturing, determination of growth parameters, freezing, thawing and shipment of cells)
4) Cell lines versus primary cells (isolation of primary cells, establishment and characterization of cell lines)
5) Cells as factories (hybridomatechnique for the production of monoclonal antibodies, production of recombinant proteins, transfection, mass cell culture)
6) Methods in cell culture
7) Stemcells (Basics)
8) Plant cell cultures

Assessment methods

written exam (100%)

Teaching methods

Lecture (PowerPoint presentation and short demonstration videos)

Language

German-English

1 1

Grundstudium

Lecture SWS ECTS
Applied Statistics II UE

Applied Statistics II UE

Lector: Mag. Irene Steiner, Univ.-Prof. Dipl.-Ing. Dr. Werner Timischl

1 SWS
1 ECTS

Lecture contents

Case examples on the following range of topics:
1- ans 2- sample comparisons with metric populations;
1- and 2- sample comparisons with dichotomous populations;
1-factorial ANOVA;
Correlation;
Simple linear regression.

Assessment methods

For the tutorial examples are to be prepared and demonstrated in the group; in addition, each student has to present a project.

Teaching methods

Discussion of prepared examples and projects. Problem solving preferably using R.

Language

German

1 1
Applied Statistics II VO

Applied Statistics II VO

Lector: Univ.-Prof. Dipl.-Ing. Dr. Werner Timischl

1 SWS
1 ECTS

Lecture contents

1-sample problems: binomial test, confidence intervals for probabilities.

Hypothesis testing II (2-sample problems):
Experimental designs (parallel groups, paired comparisons); comparing two means (t-test, paired t-test, F-test); comparing two proportions (Chi-Square test, Mc Nemar test); sample size calculations.

Correlation ans Regression analysis:
Two way contingenca tables, measures of association; simple linear regression, least squares method, estimation and hypothesis testing, nonlinear regression models; multiple linear regression.

One-Way Analyisis of Variance:
Estimation of model parameters, statistical analyisis, model adequacy checking; comparing single treatments.

Statistical methods of quality management:
Control charts for average and standard deviation; acceptance sampling.

Assessment methods

Written examinationmaterial and exercises for peparation: see FH-website

Teaching methods

Lecture with case studies; accompanying text to lecture, collection of formulae and R-script: See FH-website

1 1
Biochemistry II VO

Biochemistry II VO

Lector: Mag. Dr. Heinrich Kowalski

1 SWS
2 ECTS

Lecture contents

Structure of proteins; four organizational levels of protein structure; classes of proteins and domains; enzymes and their classes, including examples; protein isolation and detection of proteins; in vitro vs. in vivo protein folding (molecular chaperones); thermodynamics of biochemical reactions; enzyme kinetics (Michaelis-Menten, Lineweaver-Burk); mechanisms of inhibitors; allostery and cooperativeness; cofactors (metal ions, prosthetic groups and co-enzymes); catalytic mechanisms; protein biosynthesis and glycolysis.

Assessment methods

Written; Free text questions aimed at knowledge and understanding

Teaching methods

Lectures

Language

German

1 2
Bioinformatics ILV

Bioinformatics ILV

Lector: Samuel Gerner, FH-Prof.in Mag.a Dr.in Alexandra Graf, Anna Tomaselli, BSc

3 SWS
3 ECTS

Lecture contents

In this lecture we talk about what Bioinformatics is and why we need it today. The studients will be introduced to basic programming and can play around with simple practical examples.
We will go through specific topics of Bioinformatics and discuss the available applications. The topics include:
- Why did Bioinformatics develop and what is it.
- Human Genome Project and its consequences
- Biological sequences, sequence comparison and database search.
- Pattern search
- Structure of biological sequences and structure prediction
- High throughput technologies and data analysis

Assessment methods

Exercises to be handed in using the Moodle Platform, and short mulitple choice tests also on the Moodle platform.

Teaching methods

lecture, powerpoint presentation, discussion and hands on exercises

Language

German

3 3
Bioorganic Chemistry VO

Bioorganic Chemistry VO

Lector: Ao. Univ.-Prof. Mag.pharm. Dr. Thomas Erker

2 SWS
2 ECTS

Lecture contents

Basics of the chemistry of

Carbohydrates: Monosaccharides
Disaccahrides
Polysaccharides

Amino acids

Lipids Fatty acids
Eikasanoids
Fats
Carotinoids
Terpenoids
Bile acids
Sterols
Secosteroids
Corticoid hormons
Steroidglycosides

Assessment methods

Written test

Teaching methods

Lecture

Language

German

2 2
English in Science and Career I ILV

English in Science and Career I ILV

Lector: FH-Prof. Dr. Paul Watson

2 SWS
2 ECTS

Lecture contents

The course will deal with all four areas of language skills: reading/writing/talking/listening.

The emphasis in the 3rd semester will be on spoken English (presentations (spontaneous and prepared)).

Oral presentations will be an important part of the semesters's work.

Grammar revision (where appropriate) will be offerred.

ACTIVE PARTICIPATION IN THE LESSON IS VERY IMPORTANT AND WILL BE GRADED!

Assessment methods

Your command of English, both spoken and written, will be continuously assessed during the semester and will be reflected in the final semester mark. Moreover your active participation in the lessons will also contribute to the overall mark.

Teaching methods

Spontaneous and prepared presentations. Brainstormings, Discussions, Debates. ‘Language clinics’. Individual, pair- and group-work. Self-reflection is a major focus of the course.

Language

English

2 2
Fundamentals of Microbiology VO

Fundamentals of Microbiology VO

Lector: FH-Prof.in Mag.a Dr.in Beatrix Kuen-Krismer

1.5 SWS
2 ECTS

Language

German

1.5 2
Molecular Biology I LAB

Molecular Biology I LAB

Lector: Andrea Steinbauer, BSc MSc, FH-Prof. Dr. Herbert Wank, FH-Prof. Dr. Paul Watson

1 SWS
1 ECTS

Lecture contents

In this course the students will get a crash-course in "how to handle an automatic pipet". Then the students perform several restriction digestions in order to map an unknown piece of DNA. At the end of the course, the students determine the concentration of an unknown DNA-Sample spectrophotometrically (including calculation).

Assessment methods

Enthusiasm, Protocol in English

Teaching methods

Independent work in the laboratoryIntroductory remarks from the lector/tutorIndependent drawing of a plasmid mapWriting of a protocol

Language

German

1 1
Molecular Biology II LAB

Molecular Biology II LAB

Lector: Jana Dragisic, BSc, Mikaela Andrea Edwards, BSc, Richard Manning, FH-Prof. Dr. Herbert Wank, ao. Univ.-Prof. Dipl.-Biol. Dr Angela Witte

3 SWS
3 ECTS

Lecture contents

In this course students learn the basics of cloning. The DNA of an ORF of a phage is amplified using PCR and cloned into the pUC18 vector. Following methods are performed: PCR, restriction digestion, DNA ligation, competent E. coli, plasmid transformation, selection, identification of the clones.
Additionally a deletion mutant is analysed by PCR and nucleic acid will be precipitated.
The students also write a scientific protocol in "publication-form."

Assessment methods

the grades include:- protocol- lab participation- written test

Teaching methods

practical course with theoretikal background

Language

German

3 3
Molecular Biological & Biophysical Methods SE

Molecular Biological & Biophysical Methods SE

Lector: FH-Prof.in Univ.Doz.in Dr.in Ines Swoboda, FH-Prof. Dr. Herbert Wank

2 SWS
3 ECTS

Lecture contents

Topics:
Detection of Nucleic Acids
PCR
Western blot
Growth of Microorganisms
Antibodies and their use in Molecular Biology
Centrifugation
Southern and Northern blot
Primer and Hybridization
Proteinexpression and purification
Microarray
Flurescence in Molecular Biology
Sequencing
Isolation and Purification of Nucleic Acids from various Organisms
Primer design for cloning of a gene

Assessment methods

Preparation, Oral Presentation, Participation in Discussions, written exam at the end of the seminar

Teaching methods

Seminar, topic preparation in small groups (3-4), oral presentation in small groups (3-7), 15 minutes presentation, discussion, preparation of a handout

Language

German-English

2 3
Physical Chemistry VO

Physical Chemistry VO

Lector: Univ.-Prof. Dr. Annette Rompel

2 SWS
3 ECTS

Lecture contents

Introduction, thermodynamics, enthalpy entropy, free energy, spontaneous and non-spontaneous processes, calorimetry, osmometry, chemical equilibrium, phases, phase diagrams, electrochemistry, kinetics, molecular systems, non bonding interactions, Lenard-Jones potential

Assessment methods

Written exam; 8 theoretical questions and practical examples; 24 points necessary for grade Emax. points: 40

Teaching methods

lecture

2 3
Quality & Process Management VO

Quality & Process Management VO

Lector: DI Dr. Georg Hruschka, DI Dr. Timo Kretzschmar, Dr.Techn. Roland Werner Müller, DI (FH) Franz Stark

2 SWS
2 ECTS

Lecture contents

This lecture gives an introduction into quality management. The following aspects will be imparted within this lecture:
- QM basics, terms and definitions
- Development of strategical approaches and models
- Introduction into process management: design and process description of a site including creation of operating procedures
- ISO 9000/9001
- Requirements on QA regarding drug manufacturing: GLP and GMP
- Documentation
- Basics on norming, certification and accreditation

Assessment methods

Moodle test

Teaching methods

Lecture

Language

German

2 2
Social Skills III ILV

Social Skills III ILV

Lector: Monika Frauwallner

1 SWS
1 ECTS

Lecture contents

Team development and conflict strategies
• team
• phases in team development
• roles in the team
• conflict analysis
• phases of conflict escalation
• strategies for handling conflicts

Assessment methods

Your performance will be continuously assessed during the semester and will be reflected in the final semester mark. Moreover your active participation in the lessons will also contribute to the overall mark.

Teaching methods

Lecture, individual and group work, practical exercisesSelf-assessment via exercises• for self reflection and individual application• practical exercises with feedback and analysis

Language

German

1 1
Virology VO

Virology VO

Lector: FH-Prof.in Univ.Doz.in Dr.in Ines Swoboda

0.5 SWS
1 ECTS

Lecture contents

Basics in Virology:
(a) Bacteriophages: morphology, replication, growth and quantification, application in biotechnology - examples
(b) animal viruses: morphology, replication, pathogenesis, examples (retro viruses, influenza virus)

Assessment methods

Written exam

Teaching methods

Lecture

Language

German-English

0.5 1
Cell Biology II LAB

Cell Biology II LAB

Lector: Mag.a Dr.in Marianne Raith

3 SWS
3 ECTS

Lecture contents

Experiment 1: Handling of Cell Lines (Splitting, Cryoconservation, Live-Dead-Ratio)
Experiment 2: Growth Curve (Evaluation of Doubling-Time and the Influence of Changed Culture conditions)
Experiment 3: Cell cycle/Mitosis
Experiment 4: Differentiation of Neuronal Cells
Experiment 5: Cytoskeleton/Transfection
Experiment 6: Problem-Based Learning

Assessment methods

Active participation during the whole course (technical performance and participation)closing discussion (similar to oral exam) and presentation of the problem-based question (in groups) every student has to write a protocol describing the experimental part of the course (deadline 2 weeks after the end of the laboratory course, see Moodle for further details)

Teaching methods

preparatory discussions and lectures of the theoretical background of every experiment, followed by the experimental demonstration.

Language

German

3 3

Grundstudium

Lecture SWS ECTS
Analytical Chemistry III VO

Analytical Chemistry III VO

Lector: Ao.Univ.-Prof. Dr. Norbert Haider, Ao.Univ.-Prof. Dipl. Ing. Dr. techn. Wolfgang Holzer

2 SWS
2 ECTS

Lecture contents

A) spectroscopic methods (Ao. Professor Dr. Wolfgang Holzer)

The principle of spectroscopic methods
Ultraviolet Visible spectroscopy
Infrared spectroscopy
Atomic absorption spectroscopy
Flamen photometry (atomic emission spectroscopy)
Fluorescence spectroscopy
Mass spectrometry
X-ray structural analysis
Nuclear magnetic resonance spectroscopy

B) Separation methods (Ao. Professor Dr. Norbert Haider)
Chromatographic methods
The principle of chromatographic methods
Thin layer chromatography
Classical column chromatography
HPLC
Gas chromatography
Interpretation of chromatogramms

Electrophoretic methods
Fundamentals
Gel electrophoresis (1D, 2D)
Capillary electrophoresis

Assessment methods

Written exam as a single comprehensive test,partially as MCQ, partially other question types (open text, calculations, drawings)A detailed description regarding the exam as well as some example questionnaires are available for download.Date and time of the exam: see course calendar (date&time for a repetition test will be announced as needed)

Teaching methods

Lecture

Language

German

2 2
Biochemistry III LAB

Biochemistry III LAB

Lector: Dr. Radostina Bachmaier, Ao. Univ.-Prof. Mag. Dr. Rudolf Öhler, Andrea Steinbauer, BSc MSc

3 SWS
3 ECTS

Lecture contents

Enzymekinetics, photmetry, Lambert-Beers law, Michaelis-Menten-Kinetics, direct plot, Lineweaver-Birk plot, influence of inhibitors, IC50.
Methods in protein chemistry for preparative isolation of enzymes and for the first steos in proteome analysis: buffers, methods for cell-disruption, cell-fractionation, reversiblie and irreversible precipitation of proteins, centifugation,dialysis, ion-exchange-chromatography, indirect enzyme essay, protein quantification methods, electrophoresis methods (SDS-PAGE, 2-dimemsional gel electrophoresis), in-gel protein staining methods (coommassie and silver stain)

Assessment methods

1/3 exam concerning the theoretical background at the begining of the course1/3 activity of oral and practical participation during the course1/3 assessment of the protocol written by the student after the course (deadline a few weeks after the course)

Teaching methods

Groupwork under constant attendance by teacher and tutor, lectures held by teacher, demonstrations by the tutor, presentations by the students. Discussion of experimental results. Script containing theoretical background information and experimental procedure.

Language

German

3 3
Biochemistry III VO

Biochemistry III VO

Lector: Mag. Dr. Heinrich Kowalski

1 SWS
2 ECTS

Lecture contents

Introduction: Types and fundamental patterns of metabolism, role in biotechnology and medicine.

Methods for elucidation of metabolic pathways, Metabolomics, metabolic flux, brief overview on metabolic control analysis.

Flux of energy and matter through the biosphere; thermodynamics of biochemical processes (role of ATP, group-transfer potential, energetic coupling of reactions and principle of Le Chatelier, open systems, steady-state, substrate-level phosphorylation, biological redox reactions).

Fundamental catabolic (energy-producing) and anabolic (biosynthetic) pathways and their regulation: glycolysis, fermentation & Cori-cycle, citric acid cycle, electron transfer chain and oxidative phosphorylation, pentosephosphat shunt, gluconeogenesis, metabolism of glycogen, biosynthesis and beta-oxidation of fatty acid, lipoproteins, cholesterol and bile acids, protein degradation (focus autophagy), amino acid metabolism and nitrogen disposal (urea cycle): Includes all biochemical reactions, enzymes and coenzymes/vitamins inclusively discussion of their mechanism on basis of specific examples, preparation of energy balance sheets, and causes for some important metabolic disorders.

Regulation and integration of metabolism: pace maker concept and the "committed step" of biochemical reactions, avoidance of futile cycles, substrate channeling, iso(en)zymes, regulation enzyme activity, selected examples of hormonal regulation of metabolic reactions.

Assessment methods

A written test on the material of the course as outlined in the summary of learning objectives of this course (multiple choice questions and essay questions).

Teaching methods

PowerPoint presentation (available as a script to students), a comprehensive summary of learning objectives, practice test.

Language

German

1 2
English in Science and Career II ILV

English in Science and Career II ILV

Lector: FH-Prof. Dr. Paul Watson

2 SWS
2 ECTS

Lecture contents

The course will deal with all four areas of language skills: reading/writing/talking/listening.

The emphasis in the 4th semester will be on written English with the focus on business English. We will also cover important, everday aspects of scientific life such assafety in the lab/at work.

Oral presentations will also be as important as in the previous semester but the students will be more independent.

Grammar revision (where appropriate) will be offerred.

ACTIVE PARTICIPATION IN THE LESSON IS VERY IMPORTANT AND WILL BE GRADED!

Assessment methods

Your command of English, both spoken and written, will be continuously assessed during the semester and will be reflected in the final semester mark. Moreover your active participation in the lessons will also contribute to the overall mark.

Teaching methods

Spontaneous and prepared presentations. Brainstormings, Discussions, Debates. ‘Language clinics’. Individual, pair- and group-work.

Language

English

2 2
Developmental Biology VO

Developmental Biology VO

Lector: FH-Prof. Dr. Thomas Czerny

2 SWS
3 ECTS

Lecture contents

Principles of development (differentiation, growth, pattern formation, induction, morphogenes, cytoplasmic determinants, regulative development, cell fate, cell movement, differential cell adhesion)
Stages of development (early cell division, gastrulation, neurulation, organ development)
Development of important model systems (Drosophila, C. elegans, zebrafish, Xenopus, chick, mouse, evolutionary comparison)
Methods of developmental biology (transplantation, analysis of gene expression, gain-of-function and loss-of-function methods)
Axis determination (organizer, anteroposterior axis - hox genes, dorsoventral axis – Bmp/chordin, left/right axis)
Blood circulation (angiogenesis, hematopoietic system)
Regulation of growth and cancer development
Germ cells and reproduction (gametogenesis, fertilization, in vitro fertilization, cloning)
Regeneration (stem cells, models for regeneration, tissue engineering, aging)

Assessment methods

written exam in the last lecture

Teaching methods

lecturesPowerpoint presentations and down-loads

Language

German

2 3
Genome Organization ILV

Genome Organization ILV

Lector: FH-Prof. Dr. Thomas Czerny

1 SWS
2 ECTS

Lecture contents

Structure and properties of DNA, RNA and proteins (short repetition). Composition of the genome of pro- and eukaryotes (including viruses), with an emphasis on the human genome. This includes the structure of genes (regulatory regions, start/stop signals, exon/intron structure) and the remaining genome (junk DNA, invasive elements, structure of chromosomes).
Effects of mutations (point mutations, deletions, inversions) and repair, recombination, meiosis and mitosis.
Structure of chromosomes and chromatin (nucleosomes, compaction of DNA, telomeres) and effects of chromatin/DNA modifications on gene function (modifications of histone tails, DNA methylation, eu- and heterochromatin, epigenetic mechanisms).
Techniques for analysis (sequencing, gene annotation, sequence comparisons, analysis of the genome) and applications (DNA integration, transgenics, viral vectors, gene therapy, knockout).

Assessment methods

At the beginning of each lecture will be an online test. In the following lecture this test can be repeated once (in this case the result of this 2nd test counts). The results of the test are then combined, no final exam.

Teaching methods

Powerpoint presentations

Language

German

1 2
GMP & GLP VO

GMP & GLP VO

Lector: Monika Frauwallner, DI Franz Gatterer, MBA, DI Dr. Georg Hruschka, DI Dr. Timo Kretzschmar, Dr.Techn. Roland Werner Müller, DI (FH) Franz Stark

4 SWS
5 ECTS

Lecture contents

The contents of the Austrian legal provisions as e.g. Medicines Act and Medicines Ordinance 2009 should be studied at home. The meaning of these provisions will be made understandable by practically applying these to fictitious case studies in the framework of a project under the supervision of the tutors recruited from biopharmaceutical industry.

Assessment methods

Project works and written examination.Assessment of the written project according to completeness according to utilised provisions, visual appearance, clear and structured as well as consistent contents, skilled use of tutor's instructions. Oral examination.Written examination to test the imparted GMP/GLP-Knowledge.This lecture is performed in co-operation with the lecture of project management as a modul but separately assessed.

Teaching methods

Online working and residential moduls will make the frame in the sense of "blended learning".In co-operation of the lecture "project management" groups and their subgroups will elaborate a project plan and implement this plan under the guidance of tutors.

Language

German-English

4 5
Histology VO

Histology VO

Lector: Univ.-Prof. Dr. Adolf Ellinger

2 SWS
3 ECTS

Lecture contents

1 A CYTOLOGY (rep.): eukaryotic cells, dimension, form, unity/variety, membranes, organelles.
B MICROSCOPY: proper use of light microscopy, tissue preparation (fixation, embedding, microtomy, staining, histochemistry), electron microscopy.
GENERAL HISTOLOGY
2 Tissue course 1 - TISSUE CONCEPT: definition, organization, cells/matrix.
EPITHELIAL TISSUE: surface epithelium / glands: organization, construction principles, cell connections, polarity, basal membrane, secretion, example: pancreas.
3 Tissue course 2 - CONNECTIVE TISSUE: classification, cells / matrix, construction principles, types; adipose tissue (types, histogenesis, function) /cartilage (ground substance, types, histogenesis)/bone (formation, remodelling).
4 Tissue course 3 - MUSCLE TISSUE/contractile cells: classification of muscle and comparison of the three types; myofibroblast, myoepithelial cells; cytoskeleton, sliding filament model.
5 Tissue course 4 – NERVE TISSUE: Composition of nervous tissue, neurons/nerve cells, nerve fibres, supporting cells – neuroglia, nerves, synapses, organization of peripheral and central nervous system.
MICROSCOPIC ANATOMY – ORGANOLOGY:
6 CARDIOVASCULAR SYSTEM, BLOOD: plasma, blood cells and cellular elements, formation of blood cells - bone marrow, blood vessels.
7 DIGESTION – ALIMENTARY CANAL: oral cavity, tooth, oesophagus, stomach, intestine, liver, pancreas.
8 ELIMINATION – URINARY SYSTEM: histophysiology of the kidney, excretory passages, urinary bladder, ureters.
9 REPRODUCTION - FEMALE/MALE REPRODUCTIVE SYSTEM: gametes, meiosis; ♂: testis, epididymis, accessory glands, prostatic hypertrophy / cancer, semen, factors affecting spermatogenesis; ♀: ovaries, oviduct, uterus – placenta, in vitro fertilization.
10 INTEGUMENTARY SYSTEM - SKIN: construction principles - types, cells of the epidermis, skin appendages.
SENSORY ORGANS: example – eye: general and microscopic structure, accommodation, cataract, glaucoma.

Assessment methods

Written examination (combination of multiple-choice questions, written questions and drawings) at the end of the course.

Teaching methods

Lecture (powerpoint, board), online demonstration virtual microscopy, film-sequences. Accompanying script on the web (condensed version of the powerpoint presentations), structuring, extension by lectures, follow up in text books.

Language

German

2 3
Immunology VO

Immunology VO

Lector: Prof. Dr. Thomas Decker

1 SWS
2 ECTS

Lecture contents

Basic knowledge about the importance and function of the immune system. Distinction between innate and acquired immunity and the interplay of the innate and acquired immune system in an antimicrobial immune response.

Assessment methods

Written exam

Teaching methods

Lecture with visual representation of the essential content. Questions and discussion by students are highly welcome.

Language

German

1 2
Molecular Biology III LAB

Molecular Biology III LAB

Lector: Thomas Däullary, BSc, Yan Gillen, BSc, Andrea Steinbauer, BSc MSc, FH-Prof. Dr. Herbert Wank, ao. Univ.-Prof. Dipl.-Biol. Dr Angela Witte

3 SWS
3 ECTS

Lecture contents

In this practical course, the basic function of genes will be analysed by students using a bacterial system. Additionaly the students will learn protein analytical and protein processing methods. The Expression of a recombinant protein will be studied first in small scale (expression in E. coli). Using western-blot analysis the timecourse of protein expression will be anlaysed. In a large scale volume experiment, using the before determined conditions, the recombinant protein will be purified by affinity chromatography and analysed.

Assessment methods

the grades include:- protocol- lab participation- written test

Teaching methods

practical course with theoretical background

Language

German

3 3
Project Management ILV

Project Management ILV

Lector: DI Franz Gatterer, MBA

2 SWS
2 ECTS

Lecture contents

Content of this course covers the following topics:

Projectmanagement basics: Definition of a project, definition of projektmanagement, types of projects, pros/cons of project(managament), phases of projects

Projectdevelopment: From the idea to the project proposal, stakeholder analyses, types of organisations, teambuilding and -development

Project planning: Basics, development of a project plan (workpackages, milestones, dependencies), optimazation of planning, riskmanagement, timemanagement and management of costs

Monitoring projects: Basics of project controlling (time, quality and financials), project performance indicators

Managing pprojects: Basics, principles of coordination, informationmanagement, meeting and reporting, decision making power, leadership and people management

Assessment methods

Assessment of the team work (open feedback)Written examination

Teaching methods

Course is based on a combinaton of teaching and selected case studies.Students are split into three groups. Each team has to manage (plan, document, present, gather feedback) a specific project throughout all phases.

Language

German

2 2
Social Skills IV ILV

Social Skills IV ILV

Lector: Monika Frauwallner

1 SWS
1 ECTS

Lecture contents

Moderation and troubleshooting
• moderation
• moderation methods
• rhetorical strategies
• troubleshooting

Assessment methods

Your performance will be continuously assessed during the semester and will be reflected in the final semester mark. Moreover your active participation in the lessons will also contribute to the overall mark.

Teaching methods

Lecture, individual and group work, practical exercisesSelf-assessment via exercises• for self reflection and individual application• practical exercises with feedback and analysis

Language

German

1 1

Grundstudium

Lecture SWS ECTS
Bachelor Thesis I SE

Bachelor Thesis I SE

Lector: Monika Frauwallner, DI Dr. Georg Hruschka, DI Dr. Timo Kretzschmar, Dr.Techn. Roland Werner Müller, DI (FH) Franz Stark

4 SWS
5 ECTS

Lecture contents

15 Topics related GMP/GLP implementation in labs .... here only one example listed
e.g.:
The aim of the bachelor thesis is to design a „Standard Operation Procedure“ (SOP) for the outsourcing of the control laboratory under compliance with „Good manufactoring practice“ standards. The SOP should help to standardize this outsourcing. Furthermore risks, which may occur at the integration of external laboratories, have been examined.

Assessment methods

40% legal perspective30% lab specific perspective30% knowledge preparation and documentation

Teaching methods

Project Oriented Approach:KickoffExact timeplan for all studentsTopic specific sessions in plenumSupport vie e-learning (web-platform)Accumulated Q&A ensures common knowledge of issues and Solutions of Problems arised

4 5
Biological Models VO

Biological Models VO

Lector: FH-Prof. Dr. Thomas Czerny, Dr. Caroline Lassnig

1 SWS
2 ECTS

Lecture contents

Almost all knowledge on the molecular details of biological pathways originates from research on biomodels. Biomodels have different advantages and strengths and have to be carefully selected depending on the questions asked. In this lecture animal model systems will be discussed in detail. First unicellular, fungal and plant models will be discussed. Then the main animal model systems are presented: vertebrates (fish, frog, chick and mouse) and invertebrates (Drosophila and C. elegans). Various molecular and genetic methods for the analysis of animal models are presented and finally a mouse facility at the VetMed is visited.

Assessment methods

written exam in the last lecture

Teaching methods

lecturesPowerpoint presentations and downloads

Language

German-English

1 2
Functional Genomics VO

Functional Genomics VO

Lector: FH-Prof. Dr. Thomas Czerny, Ao. Univ. Prof. Mag. Dr. Wolfgang Mikulits, Doz. Mag. Dr. Wolfgang Sommergruber, Doz. Dr. Tilman Voss

2 SWS
3 ECTS

Lecture contents

The lecture features a comprehensive and clear access to the basics and techniques to identify and validate target genes which are responsible for specific (patho)physiological transitions. In addition, the identification of small organic compounds modulating the function of those target genes will be discussed:
-basic signalling pathways of the cell (focus: oncology)
-basics and techniques for identification/validation of therapeutically relevant target genes/biomarkers (focus: oncology)
-establishing gene libraries, differential and serial gene expression analysis, subtractive hybridization, full genome analysis on human GeneChips, transcription profiling; genomic approaches in combination with LCM and IHC; synthetic lethality screen
-whole genome sequencing; correlation of transcriptome with SNP-profil (chromosomal rearrangements) and mutation status
-statistics and bioinformatics for analyses of huge data sets (transcription profiles, proteomics; in silico analysis)
-gene transfer, selective interference with gene expression (antisense, RNAi); functional characterization (gain-of-function/loss-of-function)
-analysis of the proteome, primary sequence and structural-/functional prediction via in silico methods
-mechanisms of tumorgenesis (oncogenes, identification of therapeutically relevant genes/mechanisms in oncology, selection criteria of target genes, “oncogenomic signatures” (“IRESSA paradigm”), molecular mechanisms of oncogene addiction
-inhibitors of growth factor driven signal transduction pathways
-therapeutically relevant “(non)canonical pathways” in oncology
-cell cycle inhibitors (MPF, cyclins and cyclin-dependent kinases, CAK, p53, RB, APC; G2/M checkpoint and p53)
-neo-angiogenesis und tumor growth
-“Hit to Lead” (H2L)
-preclinical studies (toxicology, patient stratification, surrogate marker, selectivity, pharmakokinetics)
-clinical trials

Assessment methods

Written examination at the end of the lecture

Teaching methods

2-hour lecture (PowerPoint presentations will be provided electronically)

Language

German

2 3
Gene Expression VO

Gene Expression VO

Lector: FH-Prof. Dr. Herbert Wank

1 SWS
2 ECTS

Lecture contents

Evaluation of the existing knowledge regarding gene expression (Survey)

According to the results of the survey the following topics are discussed:
Transcription
Regulation of Transcription in Pro- and Eucarotes
Translation
Regulation of Translation
Regulatory RNAs

Assessment methods

written exam at the end of the lecture

Teaching methods

SurveyLecture

Language

German

1 2
Human Physiology VO

Human Physiology VO

Lector: Dr.phil. Dr. med.univ. Karl-Heinz Huemer

2 SWS
3 ECTS

Lecture contents

homoiostatic regulation, membrane potential (compartments, transport mechanisms, resting membrane potential, action potential, nerve conduction)heart (structure, conduction, ECG, heart cycle, coronary circulation)
respiration (lung volumes, breathing cycle, breathing impairments, lung compliance, surfactant, O2 & CO2 transport)muscle function (electromechanic transformation, striate, smooth and myocardic muscle, force-length diagram)circulation (body, lung & fetal circulation), blood pressures, oxygen saturation, oxygen consumption, local regulation of blood flow)
blood (transport and storage of nutrients & metabolites, hemostasis, plasma proteins)
immunology (cellular & humoral systems, AB0-system, complement-system, inflammation)
excretion (nephron structure, glomerular filtration, secretion, resorption, regulation of blood volume & electrolyte composition, renin-angiotensin-aldosterone system)
metabolism/digestion (gastrointestinal tract & functions, digestion and resorption of carbohydrates, proteins & fat, functions of the liver)
sensory systems (general sensory physiology, mechanosensors, proprioceptors, photoreceptors, equilibrium, ear, smell, taste, pain reception)
nervous system (autonomic nervous system, transmitter systems, motor systems, cognitive functions)
endocrinology (important hormone receptors, hypophysis, regulation of glucose level, catecholamines, glucocorticoids, thyroid, sexual functions)

Assessment methods

written exam

Teaching methods

lecture

Language

German-English

2 3
Intercultural Management ILV

Intercultural Management ILV

Lector: Mag. Klara Parfuss, MBA

1 SWS
1 ECTS

Lecture contents

•What is culture? Definitions and cultural models, cultural identity of the individual, values
•Reasons for misunderstanding in cooperation: self-perception, perception by others
•Stereotypes and prejudices – how can we avoid them?
•Intercultural competence, intercultural strategies
•Culture shock: phases and coping strategies
•Culture dimensions (Trompenaars, Hofstede, Hall, Lewis…etc.)
•Language and communication across cultures - differences regarding style, directness,
context
•Critical incidents in the multicultural work, analyses and solutions
•Living and working in a foreign country: Knowledge, behavior, cultural values, working
practices, taboos, Do’s and Dont’s

Assessment methods

•Active participation•Presentation•Written exam

Teaching methods

•Short theory inputs•Presentation in small groups•Short film sequences •Exercises, simulation, role-plays•Discussion•“Critical incidents”, analysis and solutions•Reflecting of joint experience

1 1
Clinical aspects of immunology VO

Clinical aspects of immunology VO

Lector: Assoc. Prof. Priv.-Doz. Dr. Gernot Schabbauer

1 SWS
2 ECTS

Lecture contents

CLINICAL APPLICATIONS OF IMMUNOLOGY
ACUTE INFLAMMATORY DISEASES
The immune system evolved to protect against pathogenic organisms such as viruses, bacteria and other parasites. Innate and acquired immunity work together.
In this chapter we will focus on the molecular basis and clinical relevance of the misdirected immune system in the context of, for example, infectious diseases.
One of the key activities of the immune system is the distinction between "self" and "foreign".
AUTO IMMUNITY AND IMMUNODEFICIENCY
If endogenous structures are not recognized as "self", a result of the lack of tolerance can be the emergence of autoimmune diseases. In the case of insufficient recognition of "foreign" or the inability of the immune system to react adequately to “foreign”, the organism may inadequately protect against intruders, and serious life-threatening infections can be the result.
This chapter describes the most important and most common autoimmune diseases (clinical presentation, diagnosis, pathogenesis models), as well as major congenital and acquired immunodeficiencies. In conclusion, the clinically relevant coincidence of immunodeficiency and autoimmune phenomena will be briefly discussed.
ALLERGY
Some exogenous structures are classified by the immune system as potentially dangerous. In this case, there is an unregulated immune response which is based on special mechanisms.
In this chapter we talk about the symptoms, clinical presentation and different manifestations of allergies. We also illuminate the molecular background of allergic reactions.

Assessment methods

Single-choice questionsOverview questions

Teaching methods

Lectures with Powerpoint, Flipchart, Whiteboard

Language

German

1 2
Markteting & Sales ILV

Markteting & Sales ILV

Lector: Mag. Astrid Christine Erber

1 SWS
1 ECTS

Lecture contents

1. Marketing and marketing management, definitions
2. Market research
3. Portfolio Management
4. Marketing strategy: Segmentation, targeting, differentiation and positioning
5. Marketing mix: Product, Price, Place (Distribution) and Promotion (Communication)
6. Presentation case studies and discussion

Assessment methods

The final course grade will be based on the following:40% Written exam40% Case study20% Group work and participation

Teaching methods

Lecture, group work with presentations, case studies

Language

English

1 1
Organic Chemistry LAB

Organic Chemistry LAB

Lector: Angelika Ebner, Ao.Univ.-Prof. Dr. Norbert Haider, Ao.Univ.-Prof. Dipl. Ing. Dr. techn. Wolfgang Holzer, Mag. pharm. Amra Ibric, Mag. Regina Schoba, Ao.Univ.-Prof. Dr. Helmut Spreitzer, Mag. Markus Tarnai

6 SWS
6 ECTS

Lecture contents

1. Distillation under atmospheric pressure
2. Distillation under reduced pressure
3. Extraction of an organic acid from an aqueous solution and recrystallization of the crude product
4. Synthesis of ethyl acetoacetate ethylenketal; azeotropic removal of H2O; 1H-and 13C-nmr spectra
5. Synthesis of ethyl 5-hydroxy-1-phenyl-1H-pyrazole-4-carboxylate; synthesis of an heterocyclic
compound; 1H-and 13C-nmr-spectra
6. Synthesis of isophorone epoxide; olefin epoxidation with H202
7. Synthesis of the antiepileptic agent phenytoine; benzilic acid rearrangement; synthesis of an
hydantoine
8. Synthesis of the antihypertensive/Ca-channel-blocking agent nifedipine; Hantzsch pyridine
synthesis; 1H- and 13C-nmr-spectra
9. Synthesis of methyl salicylate; oil of wintergreen

Assessment methods

Evaluation is based on laboratory work

Teaching methods

Laboratory course

Language

German

6 6
Project & Product Management ILV

Project & Product Management ILV

Lector: Mag. Astrid Christine Erber

1 SWS
2 ECTS

Lecture contents

In parallel to Marketing&Sales (iLV), where general concepts are covered, this course covers special chapters in Marketing/Product Management in Life Sciences:

1. Product Development: Discovery to commercialization, with a focus on clinical trials
2. Legal frameworks: Codes and compliance
3. IP and licenses
4. Ethical issues
5. Global marketing
6. Marketing metrics
7. Pricing

Assessment methods

The final course grade will be based on the following:40% Written exam40% Assignment20% Group work and participation during classes

Teaching methods

Lectures, group work with presentations, assignment

Language

English

1 2
Tissue Engineering VO

Tissue Engineering VO

Lector: Mag. Dr. Daniel Spazierer

2 SWS
3 ECTS

Lecture contents

Natural regeneration of tissues; use of implants and organ transplants; biocompatible polymers - naturally occuring, synthetic and biodegradable; stem cells - function and use; Generation of scaffolds loaded with drugs, proteins and cells; delivery of drugs, proteins and cells; Tissue engineering of various tissues: skin, cartilage, bone, vascular system, heart muscle and heart valves, nerves and salivary gland; ethic considerations with the use of organ transplants and stem cells; approval of drugs

Assessment methods

Written exam after the lecture. First exam-date according to calendar; Follow-up exam date will be selected in agreement with the students

Teaching methods

Lecture with powerpoint presentation, Use of various biomaterials as examples during the lecture

Language

German

2 3

Grundstudium

Lecture SWS ECTS
Industry Practical PR

Industry Practical PR

Lector: FH-Prof. Dr. Herbert Wank

0 SWS
25 ECTS

Lecture contents

The internship serves as an introduction for the students to work independently. The tasks begin with the search for a suitable internship and internship supervisor. Students learn under the supervision of a professional the relevant professional practice in a biotechnology company/research institute and/or independent scientific work. During the internship the subject-, methodological and social competencies acquired during the study, will be implemented in the desired field of occupational activity and practically consolidated.
Another important teaching content is to summarize the internship results in form of an internship report and the documentation of scientific results.

Assessment methods

Assessment of practical supervisor

Teaching methods

Practical

Language

German-English

0 25
Bachelor Thesis II SE

Bachelor Thesis II SE

Lector: FH-Prof. Dr. Herbert Wank

1 SWS
5 ECTS

Lecture contents

Bachelorarbeit II SE

Assessment methods

Bachelorarbeit II SE

Teaching methods

Bachelorarbeit II SE

Language

German

1 5

Semester dates
Winter semester: 12th September 2016 to 3rd February 2017
Summer semester: 20th February to 14th July 2017

Number of teaching weeks
18 per semester

Times
Mon. to Fri. all day; some vocational subjects also held on Sat

Language of instruction
German


How you benefit

Your will receive an education for a growth market. Biotechnology is a key technology of the 21st century that is booming internationally as well as in Austria. In recent years Vienna has become a dynamic center for life sciences. Your career will benefit from the excellent professional reputation of your university and from the practical skills and social skills that you will also acquire during your studies. There is a high demand for well-trained experts with a strong scientific background who can immediately contribute to the success of their company. In addition to excellent career opportunities, a wide range of possible activities will be open to you. Immediately after graduation, you can work as a scientific and technical assistant primarily in research departments and laboratories at global pharmaceutical companies, universities or hospitals. With your extensive know-how of Good Laboratory Practice (GLP), you are an ideal candidate to take on responsibility in project management and quality assurance in the production of medications.

  • Biopharmaceutical industry
  • Industrial biotechnology
  • Food industry
  • Environmental technology
  • University, and other research institutions
  • Hospitals
  • Authorities

Master's degree program

Molecular Biotechnology

Master, full-time

more

Admission

Admission requirements

  • Higher education entrance qualification:

    • School leaving certificate from a secondary school or a secondary technical school.
    • Secondary school vocational certificate (Berufsreifeprüfung)
    • Equivalent certification from abroad

plus auxiliary examination "Biology Level 1" and "Chemistry Level 2" (can be chosen as an exam subject in the BRP or as partial examination of the university entrance examination: "Biology and Environment" and "Chemistry 2"). The secondary school vocational certificate consists of the partial examinations in "German", "mathematics", "foreign language" and a subject from the vocational field of the examination applicant.

Equivalence is determined by international agreements, validation or in individual cases a decision by the head of the academic section.

  • University entrance qualification examination (Studienberechtigungsprüfung)

The following compulsory subjects of the university entrance qualification for university courses of study are recognized, in addition to an essay on a general topic (D) in accordance with the Act on University Entrance Qualifications (StudBerG) as a prerequisite for admission to this degree program:
> Biology Level 1
> Chemistry Level 2
> Mathematics Level 2 or Physics Level 1

University entrance qualification examinations for one of the following university courses of study are recognized as an admission requirement. They were selected based on the subjects defined by the University of Vienna and the university entrance qualification examinations:
> Natural Sciences: Biology
> Chemistry
> Nutritional Sciences
> Pharmacy
> UF Biology and Environmental Science

  • Relevant professional qualification with auxiliary examinations
  • Regulation for the admission of third country citizens: Info sheet (PDF)

You have professional qualifications in the vocational field of "chemistry laboratory assistant and biology technician" (applies for Germany and Switzerland).

Application

There are 50 places available in the bachelor's degree program in Molecular Biotechnology each year. The ratio of places to applicants is currently around 1:3

To apply you will require the following documents:

  • Birth certificate
  • Proof of citizenship
  • Proof of residence
  • School leaving certificate / university entrance qualification examination / verification of professional qualifications
  • If necessary, the certificate of completion of compulsory military or civil service.
  • For those changing degree programs: transcripts of the examinations completed

Please note:

It is not possible to save incomplete online applications. You must complete your application in one session. Your application will be valid as soon as you upload all of the required documents and certificates. In the event that some documents (e.g. references) are not available at the time you apply, you may submit these later via email, mail or in person by no later than the start of the degree program.

Validation and shortening programs

Perhaps your qualifications exceed our admission requirements, you are interested in the possibility of joining the program at a higher semester or you hold a degree from a university abroad?

For more information, please refer to the sections on validation and shortening programs

The selection process

The selection process consists of a written test and an interview with the selection committee.

  • Aim

The aim is to ensure places are offered to those persons who complete the multi-level selection process with the best results. The tests are designed to assess the skills needed for an applicant's chosen profession.

  • Procedure

You will complete a multiple choice test to assess your basic knowledge of (molecular) biology, mathematics and chemistry and test your ability to think logically. If you successfully pass the written selection exam at the FH Campus Wien main campus located at Favorietenstraße 226, 1100 Vienna, you will be invited to the second part of the selection process at the Campus Vienna Biocenter. An average of 120 applicants are invited to this phase of the selection process.

In the second phase of the selection process you will undergo a selection interview to provide a first impression of your personal aptitude. The qualities interviewers are looking for include motivation, performance, problem-solving, a capacity for careful consideration and an understanding of the profession.

  • Criteria

The criteria for acceptance are based solely on performance.
The geographical origin of the applicant has no influence on the selection decision.
The admission requirements must be met in all cases. Applicants are evaluated according to the following weighting system:
> Selection test 60%
> Selection interview 40%

The selection committee (which comprises, among others, the head of the academic section and representatives of the teaching staff) awards places to the applicants who score highest in the tests. The process as a whole and all test and assessment results from the selection process are documented in a transparent and verifiable manner.


Contact

Secretary's office

Elisabeth Hablas
Campus Vienna BioCenter
Helmut-Qualtinger-Gasse 2
1030 Wien
T: +43 1 606 68 77-3500
F: +43 1 606 68 77-3509
biotechnologie@fh-campuswien.ac.at

Office hours
Mon-Wed, 8.00 a.m.-12.00 a.m.
Thu, 9.00 a.m.-12.00 a.m. and 1.00 p.m.-6.00 p.m.
Fri, closed

Information: Application and Admission
Mag.a Elisabeth Malle, PhD
T: +43 1 606 68 77-3505
elisabeth.malle@fh-campuswien.ac.at

Teaching staff and research staff


Cooperations and Campusnetzwerk

We work closely with numerous biotech companies, universities, such as the University of Vienna, and research institutes and have a strong international network. This guarantees you strong contacts for your internship, a semester abroad, participation in research and development activities and your future employment. You can find information about our cooperation activities and much more at Campusnetzwerk. It’s well worth visiting the site as it may direct you to a new job or interesting event held by our cooperation partners!

Campusnetzwerk