Safety and Systems Engineering

Master, part-time

Overview

Technical systems are becoming increasingly complex - from individual vehicles to large production plants. Industry is increasing its investment in the safety of such systems, to protect humans and the environment and to avoid economic losses. This is where you will make your contribution as a qualified safety expert. Because the Master degree program deals with Safety and Systems Engineering, Risk Management, Project and Process Management and Law and Business Administration. This continuing education is in high demand in industry and has been developed by FH Campus Wien in cooperation with the TÜV AUSTRIA Academy.

Contact us

Contact us!

Mgr. Andrea Slaminková
Favoritenstraße 226, B.3.05
1100 Vienna
T: +43 1 606 68 77-8455
F: +43 1 606 68 77-8459
sse@fh-campuswien.ac.at

Map main campus Favoriten (Google Maps)

Office hours during the semester
Wed, 2.00 p.m.-6.00 p.m.
Thu and Fri, 10.00 a.m.-5.00 p.m.

Duration of course
4 Semester
Organisational form
part-time
120ECTS
Language of instruction German
20Study places
Final degree
Master of Science in Engineering (MSc)

Application period for academic year 2021/22

1st October 2020 to 31st July 2021

tuition fee / semester:

€ 363,361

+ ÖH premium + contribution2

 

1 Tuition fees for students from third countries € 727,- per semester

 

2 for additional study expenses
(currently up to € 83,- depending on degree program and year)

What you can offer

The safety of technical systems goes hand in hand with the safety of man and the environment. This is your basic principle, creating your holistic concept of safety. Your technical background is based on your education and professional activities. On the process and engineering level, system safety and risk management are your be all and end all, directing your thinking and actions. You have an analytical talent which enables you to remain a step ahead of potential dangers and risk. You prefer to be ahead of the pack in terms of tapping into the growing technical field of safety and of implementation of sustainable processes.

What we offer you

FH Campus Wien and the TÜV AUSTRIA Academy have since 2010 been successfully cooperating in the area of practice-oriented training and further education in the field of functional and system safety. With the newly developed Safety and Systems Engineering Master degree program, the two institutions are closing a gap in the educational landscape. FH Campus Wien provides the expertise in research and teaching, whilst the TÜV Austria Academy contributes its extensive know-how on machine and plant engineering. The result is a unique post-graduate education. We offer you the opportunity of pioneering without venturing into uncharted waters. Because the need for safety has long been recognized especially in the Anglo-American realm and it is on the increase in our own environment. Our cooperations with well-known companies such as Siemens AG, ZKW Elektronik GmbH, Tele Haase Steuergeräte GmbH, Thyssen Krupp Presta Hungary Kft. oder die TeLo GmbH, to name but a few, are proof of the successful transfer of know-how to industry. You will as a student be integrated into cross-disciplinary and international "safety network" and will use these valuable contacts for the exchange of experience. Practical relevance is also guaranteed through our Campus Lecture evenings which are open to all and offer contributions by prominent experts.The part-time organizational form will assist you in coordinating your job and your studies.

What makes this degree program special

The Vienna Institute for Safety & Systems Engineering (VISSE) at FH Campus Wien is a pioneer in the field of Safety among central European universities. The VISSE operates as a knowledge platform which, via the degree program, brings together university research, teaching and business practice. The VISSE experts also teach in the new Safety and Systems Engineering Master degree program. To the student this offers a unique opportunity of participating in innovative research and development projects.

The objective of the Project Safety Competence Center Vienna project, for instance, was to develop an integrative safety process which would integrate the requisite norms and standards into a process model. Using the ISaPro® Integrative Safety Process and the ISaPro® Shell Model analysis method based on ISaPro®, hazards may be systematically identified and risks may be limited. Additionally systematic errors will be avoided, which could have a negative impact in particular in the software field

This increases safety and facilitates its verification. You will study this in your degree program and may seamlessly apply your findings in your professional practice.

As an additional benefit under this degree program, we offer you the opportunity of obtaining respected TÜV AUSTRIA CERT GMBH personal certificates. On completing the relevant courses and passing a certification test, you may obtain the "Certified Safety Specialist", "Certified Safety Manager", "Certified Quality Officer" and "Certified Risk Manager" certificates. Certification is directly via the TÜV AUSTRIA Academy. The certification fees are not included in the tuition fees and will be charged separately by the TÜV AUSTRIA Academy.


What you will learn in the degree program

In the Master degree program, you will be dealing with

  • the Principles of Safety & Systems Engineering
  • Safety & Risk management
  • Business and management competency
  • Project and process management
  • Safety Advanced

You will write your Master thesis in the fourth semester.

A discipline-spanning way of thinking, where especially the interaction between individual disciplines is emphasized, is central to the education. The "Principles of Safety & Systems Engineering" module forms the basis of the Master degree program. The highly interlinked "Project and Process management", "Safety and Risk management" and "Business and management competency" modules are building on this. The "Safety Advanced" module links theoretical knowledge to practice as illustrated in the "Praxis transfer" module and also links to the Master thesis required under the "Scientific competence" module.

Curriculum

LectureSWSECTS
Applied Statistics and Probabilistic VO

Applied Statistics and Probabilistic VO

Lector: Dipl.Ing. Nikolaus Maly

2SWS
3ECTS

Lecture contents

- Basic notions of statistics:- Frequentistic approach to probability
- Random variables, distributions, expectation and variance

- Important Distributions:- Binomial- and geometric (=Pascal) Distribution,
- Normal distribution
- Poisson- and exponential distribution

- Time invariant failures:- Poisson process as time-continuous analogue to the Bernoulli-Process, failure rates and MTBF

Assessment methods

Continuous assessment
Short written exams on a regular basis. Written final exam (report). Possibly additional oral exam to clarify
questions.

Teaching methods

Distance Learning, classical black board lessons and additional home studies.

Language

German

23
Introduction to Safety Methods of Analysis ILV

Introduction to Safety Methods of Analysis ILV

Lector: Dr. Reinhard Preiss, DI Walter Sebron

2.5SWS
4ECTS

Lecture contents

- Methods of systematic hazard identification
- Risk analysis and risk assessment
- Overview of analysis methods
- Inductive, deductive and explorative methods
- Qualitative and quantitative methods
- Data sources for quantitative methods
- Procedures and advantages and disadvantages of
methods:
- Preliminary Hazard Analysis (PHA)
- Failure Mode and Effect Analysis (FMEA)
- Failure Mode and Effect Criticality Analysis
(FMECA)
- Hazard and Operability Analysis (HAZOP)
- Fault Tree Analysis (FTA)
- Event Tree Analysis (ETA)
- Cause-Consequence Analysis (CCA)
- Layer-of-Protection Analysis (LOPA)
- Human Task Analysis (HTA)
- Relative Risk Ranking
- Comparison of Methods (Advantages and Disadvantages)
- Guideline for the Selection of a Suitable Analysis Method
depending on the Use Case

Assessment methods

Continuous assessment
-

Teaching methods

-

Language

German

2.54
Introduction to System Safety and Functional Safety ILV

Introduction to System Safety and Functional Safety ILV

Lector: DI (FH) Peter Krebs

2SWS
4ECTS

Lecture contents

- Basics of System Safety
- Influences and Success Factors for System Safety
- Risk Assessment
- Functional Safety - Specification and Evaluation of Safety Functions

Assessment methods

Final exam
Final exam

Teaching methods

Lecture

Language

German

24
Fault Tolerant Systems ILV

Fault Tolerant Systems ILV

Lector: DI (FH) Peter Krebs

1.5SWS
4ECTS

Lecture contents

Basics of Fault Tolerance
- Dependability
- Phases of Fault Tolerance
Physical Fault Tolerance
- Static Redundancy
- Dynamic Redundancy
- Hybrid methods
- Fault tolerance with repair
Fault tolerance for information
- Channel and Error Models
- Basics of Block Codes
- Linear Block Codes
Temporal Error Tolerance
- ARQ procedure
- Procedure against permanent errors

Assessment methods

Final exam
Written exam

Teaching methods

Lecture

Language

German

1.54
Human Factors Engineering ILV

Human Factors Engineering ILV

Lector: Ing. Thomas Fränzl, B.Eng. MBA

1SWS
3ECTS

Lecture contents

- Introduction, basic terms and definitions of human factors.
- Psychological basics of perception and cognition; Gestalt theory.
- Mental Model, Situational Awareness, Decision Making, Human Error
- User Centred Design, Usability Engineering, User Interface Design Process, Human Factors in the Product Design/Project Life Cycle
- Social and Cultural Factors, Internationalization-Localization
- ROI of Human Factors/Usability Engineering, Cost of Change

Assessment methods

Continuous assessment
Continuous assessment

Teaching methods

ILV

Language

German

13
Information-Security VO

Information-Security VO

Lector: DI Thomas Bleier, Msc

2SWS
2ECTS

Lecture contents

- Basics of information security
- Terms
- Secure software and system development
- Operational Security
- Information Security Management
- Network Security
- Access control (authentication, authorization, etc.)
- Basics of cryptography
- Physical security
- Security testing and evaluation
- Basics of biometrics
- Business Continuity and Disaster Recovery
- Security and Psychology
- Security Economics
- Cybersecurity
- Data Protection
- Norms and standards in the field of IT security

Assessment methods

Final exam
Final exam

Teaching methods

Lectures with practical examples and exercises

Language

German

22
Crisis Management ILV

Crisis Management ILV

Lector: Dr. Helmut Pisecky

1SWS
1ECTS

Lecture contents

- Crisis: Definition and framework
- Crisis team: functions and tasks
- The emergency has occurred: From initial measures to follow-up
- Scenarios and processes
- Human factor: Individuals and groups in stress situations
- Crisis communication: Do's and Don'ts in crises - media appearances - preparing and holding a press conference
- Formation of a crisis team, situation assessment and evaluation, development and implementation of initial measures, rehearsal of procedures in the crisis team
- Practical implementation of crisis communication

Assessment methods

Final exam
Participated with success

Teaching methods

ILV

Language

German

11
Legal Aspects in the Field of Safety VO

Legal Aspects in the Field of Safety VO

Lector: Dr. Andreas Eustacchio, LL.M. (London, LSE)

1SWS
2ECTS

Lecture contents

The aim of my course is to give an overview of product liability and product safety rules. The students learn
the terms and the legal delimitation of the different legal bases such as "prod-uct liability", "compensation",
"warranty" and "guarantee".
Based on Austrian law, students learn the practical significance of product liability on the basis of individual
judgements of the European Court of Justice (ECJ), the Supreme Court of Justice of Austria (OGH) and
selected national courts of other European countries.
Due to the practical relevance of this course, the students will be shown legal peculiarities and "stumbling
blocks" and will be provided with instructional aids for coping with product liability crises.
Due to the technical background of the students of the Master's programme "Safety and Sys-tems
Engineering", the following legal terms, just to name a few, will be discussed
o What is the "state of science and technology"?
o What is the "state of the art" and what influence do standards and technical rules actually have in product
liability?
o What does the CE marking mean?
In view of the rapid technological developments, the following topics will be discussed with the students:
o Product liability and IoT (Internet of Things): Is software a product according to prod-uct liability and is the
software developer also liable?
o Digitisation: Security of networked products through software updates?
o Artificial Intelligence (AI), Internet of Things (IoT)
o Robotics: What legal framework does the European Union (EU) plan to establish for (more) safety and
liability?

Assessment methods

Final exam
Final exam

Teaching methods

Lecture

Language

German

12
Systems Engineering ILV

Systems Engineering ILV

Lector: Dr. Andreas Gerstinger

2SWS
4ECTS

Lecture contents

- Definitions and basic terms of systems engineering
- Systems theory- System definition and system delimitation
- System-Environment Analysis
- System-Environment Analysis
- Context Analysis
- Systems of Systems

- System Life Cycle
- Requirements Engineering
- Design Synthesis
- Realization
- Integration
- Verification and Validation
- Supporting
- Practical examples

Assessment methods

Final exam
Final exam

Teaching methods

Lecture, literature study and presentations

Language

German

24
Technical English ILV

Technical English ILV

Lector: Dipl.-Ing. Martin Heller, MBA

1SWS
3ECTS

Lecture contents

- Basics and basic structures of technical English
- Grammatical peculiarities
- Development and expansion of a subject-specific vocabulary
- Basic mathematical terms
- Describing forms and processes/sequences
- Typical idioms and vocabulary of technical documents
- Editing technical texts (e.g. extracts from norms and standards)

Assessment methods

Final exam
Final exam

Teaching methods

ILV

Language

German

13

LectureSWSECTS
Application of Safety Methods of Analysis UE

Application of Safety Methods of Analysis UE

2SWS
2ECTS

Lecture contents

- Context: Project Phases, Analysis Types and Analysis Methods
- Overview of analysis methods and hazard filters
- Safety analysis methods in the project process landscape of a project
- Application of analysis methods in the life cycle of a system

Assessment methods

Continuous assessment
Continuous assessment

Teaching methods

Exercise

Language

German

22
Business Management Aspects in the Field of Safety ILV

Business Management Aspects in the Field of Safety ILV

2.5SWS
5ECTS

Lecture contents

Introduction
Financial Accounting
Management Accounting
Metrics, Investment and Controlling
Case Studies

Assessment methods

Final exam
Final exam

Teaching methods

Lecture with case studies

Language

German

2.55
Integrated View of Standards ILV

Integrated View of Standards ILV

5SWS
8ECTS

Lecture contents

- Overview of relevant safety standards, such as- IEC 61508
- EN/ISO 13849 and IEC 62061 (Machinery Industry)
- IEC 615011 (process industry)
- ISO 26262 (Automotive)

- ISaPro® - Framework- Problem Space
- Model Space
- Solution Space
- Operation Space

- - Processes of the ISaPro®- Management Processes
- Engineering Processes
- Safety Processes
- Support Processes

- Weaving the basic practices into the standard ISaPro® processes
- Development of the project process landscape
- Systematic procedure in the safety-relevant project on the basis of the ISaPvor
- The safety case using the example of the Goal Structuring Notation (GSN)- Introduction to the Goal Structuring Notation
- Advantages and disadvantages of a graphical notation
- Representation of evidence by means of the GSN using the example of ISaPro®
- Application and meaning of the standard elements of the graphical notation
- Additional elements of the graphical notation for the representation of more complex projects

- Safety Assessment- Introduction and basic terms of Safety Assessment
- Safety Assessment: Tasks/Process/Roles
- Organizational approaches
- Planning and preparation
- Change description
- Operational Services and Environment Description (OSED)
- Approaches of different safety assessment procedures: Safety Screening and multi-stage procedures (Safety Achievement Methodology, System Safety of Equipment).
- Detailed questions and methods
- Types of risk reducing measures
- Documentation/Safety Case (Project & Unit SC, Goal Structuring Notation)
- Working with suppliers; software aspects
- Do's & Don'ts

Assessment methods

Continuous assessment
Continuous assessment

Teaching methods

ILV

Language

German

58
Presenting in English ILV

Presenting in English ILV

1SWS
4ECTS

Lecture contents

- Planning and preparation- Develop goals for the presentation
- Different presentation styles

- Structuring- Structure of an (English) presentation
- Presenting complex issues in an understandable and goal-oriented way
- Useful phrases for English presentations
- Checklist for opening and closing

- Dealing with the audience- Establishing rapport
- Achieving and maintaining attention
- Dealing with questions, objections, interruptions or misunderstandings

- Use of media- Tips for Power Point
- Differences in the use of visualization aids
- Process visualization & description

- Answering questions skilfully
- Conducting and analyzing a presentation

Assessment methods

Continuous assessment
• Classroom participation: 25%
• Presentations in class & follow-up task: 50%
• Moodle platform tasks: 25%

Teaching methods

continuous assessment of classroom performance; discussions, pair work, team work; student presentations

Language

German

14
Project Management for Safety Projects ILV

Project Management for Safety Projects ILV

2SWS
4ECTS

Lecture contents

- Project Management - Introduction
- Processes in technical project management
- Interactions between processes and the lifecycles used
- Methods of project management
- Project planning and integration of relevant other plans (e.g. Safety Plan, QA Plan, CM Plan)
- Project-oriented organization
- Planning of reviews, audits and assessments
- Project organization in the safety-relevant area
- Risk management
- Project controlling
- Project completion
- Escalation management
- Change Management and Change Control Board

Assessment methods

Final exam
Final exam

Teaching methods

ILV

Language

German

24
Process Management and Maturity Models ILV

Process Management and Maturity Models ILV

1.5SWS
3ECTS

Lecture contents

- Process Management – Introduction
- Process Maturity Models - Introduction
- CMMI (Capability Maturity Model Integrated) for Development
- (Automotive) SPICE (ISO/IEC 15504 and ISO/IEC 3300x)
- Assessments
- Maturity Models and Safety

Assessment methods

Final exam
exam at the end of the course

Teaching methods

- ex-cathedra teaching
- group work

Language

German

1.53
Quality Management ILV

Quality Management ILV

2SWS
4ECTS

Lecture contents

- Basics of quality management and the 8 principles for achieving quality
- Overview of quality, environmental, safety and integrated management systems
- Requirements for the quality manager
- The process management model of ISO 9001:2008
- Interpretation of the most important requirements of the standard
- Structure of a process-oriented quality documentation
- Management responsibility, management review
- Human resources, infrastructure & working environment
- Customer-related processes, procurement & product/DL realization
- KVP - Continuous Improvement Processes
- Internal & external audits

Assessment methods

Final exam
Final exam

Teaching methods

ILV

Language

German

24

LectureSWSECTS
Formal Methods for Safety Critical Areas ILV

Formal Methods for Safety Critical Areas ILV

Lector: DI (FH) Peter Krebs

2SWS
4ECTS

Lecture contents

- Definition and Application of Formal Methods
- Comparison between formal and nonformal methods
- Formal Specification
- Formal Verification
- Model Checking

Assessment methods

Continuous assessment
Continuous assessment

Teaching methods

Lecture with exercises

Language

German

24
Interdisciplinary Safety Project SE

Interdisciplinary Safety Project SE

Lector: FH-Prof. Dr. Hans Tschürtz, MSc MSc

2.5SWS
7ECTS

Lecture contents

- Setting up a safety-critical project in a team
- Creation of a technical concept
- Creation of technical specifications
- Practical implementation
- Assurance of process and product quality
- Carrying out safety analyses
- Carrying out safety assessments/audits
- Preparation of a presentation
- Presentation of the results to a selected audience

Assessment methods

Continuous assessment
Continuous assessment

Teaching methods

Seminar

Language

German

2.57
Model based Safety and Systems Engineering ILV

Model based Safety and Systems Engineering ILV

Lector: Christoph Schmittner, MSc

2SWS
3ECTS

Lecture contents

- Basics of model driven system and software development
- Introduction to MDA (Model Driven Architecture)
- Introduction and overview of UML (Unified Modeling Language) diagrams
- Introduction and overview of SysML (System Modeling Language) diagrams
- Introduction to DSL (Domain Specific Languages)
- Introduction to Contract Based Design
- Illustration and deepening of the methods by means of examples and practical application of tools (e.g. Eclipse Modeling Framework (ecore), Papyrus, etc.)
- Application in ISaPro
- Application of safety analyses in the models
- ISaPro® (Integrative Safety Process)

Assessment methods

Final exam
Final exam

Teaching methods

ILV

Language

German

23
Risk Management VO

Risk Management VO

Lector: Dr. Reinhard Preiss

0.5SWS
1ECTS

Lecture contents

- Risk Management Policy
- Plan-Do-Check-Act Cycle of Risk Management
- Framework for technical risk management
- Processes for risk identification, risk analysis, risk assessment and risk management
- Risk Monitoring
- Risk Communication

Assessment methods

Final exam
Final exam

Teaching methods

Lecture

Language

German

0.51
Safety Management Systems ILV

Safety Management Systems ILV

Lector: Ing. Andreas Dvorak, MSc, DI Walter Sebron

3SWS
5ECTS

Lecture contents

- Introduction to process-oriented management systems
- Challenges of Management Systems
- Integrated Management Systems
- Strategic Management
- Introduction to Safety Management
- Safety Management Systems
- Quality management-based safety management system
- Management Responsibilities
- Resource Management
- Product Realization
- Safety systems in operation (risks, ALARP, hazard management, etc.)
- Monitoring, evaluation and improvement
- Challenges in practical application
- Safety management in projects
- Hazard and risk management
- Safety planning
- Safety Case
- Safety Risks: Typical pitfalls

Assessment methods

Continuous assessment
Continuous assessment

Teaching methods

ILV

Language

German

35
Safety related Technical Solutions ILV

Safety related Technical Solutions ILV

Lector: DI (FH) Peter Krebs, DI Dr. Wolfgang Lechner, Christian Loidl, Dr. Reinhard Preiss

3SWS
3ECTS

Lecture contents

Solutions for Mechanics, Hydraulics and Pneumatics
- Inherently safe design measures
- Mechanical safety principles
- Fault exclusion
- Solutions for Hydraulics
- Solutions from Pneumatics
Solutions for Hardware
- Reliability of HW
- HW-Failures
- Failure prevention
- HW architecture
Solutions for Software
- SW safety
- Methods for Fault prevention
-- Programming language
-- Modularisation
-- Stateless design
-- Static resource allocation
- Methods for Fault tolerance
-- N-Version Programming
-- Recovery Block
-- Failure Assertion/Defensive Programming
-- Diverse Monitor/Watchdog
-- Error Detecting/Correcting Codes
Solutions for Process Engineering
- Failure probability
- Architecture
- Design of a SIF

Assessment methods

Final exam
Final exam

Teaching methods

Lecture with examples, practical exercises

Language

German

33
Test Management and Engineering ILV

Test Management and Engineering ILV

Lector: BSc.MSc. Abdelkader Shaaban, Dr. Thorsten Tarrach

2SWS
4ECTS

Lecture contents

- Basics of Testing
- Verification, Validation, Testing,
- Quality Control, Quality Assurance
- Static Testing
- Dynamic Testing
- Black-Box Testing, White-Box-Test
- Testing in the Lifecycle
- Component Testing
- Integration Testing
- System Testing
- Acceptance Testing
- Site Acceptance Testing
- Operation Testing during the Maintenance Phase
- Evidence for the Safety Case during
Testing
- Test Management
- Test Planning
- Test Strategy (Prioritization, Criteria, Intensity,
etc.) - Test Concept (Test Planning, Criteria, Intensity, etc.))
- Test concept (test environment)
- Test organization
- Test specification creation
- Test case creation
- Metrics data
- Test team and their independence in the project
- Test methods (regression tests, etc.)
- Test reporting
- Test tools
- Testing and safety standards
- Testing in the safety-critical area
- Qualification of test tools
- Consideration of current developments in the test environment
- Test automation
- Current development in the test area

Assessment methods

Continuous assessment
Continuous assessment
Work assignments and cooperation

Teaching methods

ILV

Language

German

24
Scientific Writing SE

Scientific Writing SE

Lector: Mag. Dr. Dr. Engelbert Mach, PhD.

1SWS
3ECTS

Lecture contents

- Reading, editing and evaluating scientific literature
- Function and use of citations, scientific communication or language
- Research question and hypotheses
- Text types: disposition, abstract, introduction/conclusion
- Review of scientific texts
- autodidactic writing exercises

Assessment methods

Continuous assessment
Continuous assessment

Teaching methods

Lecture by the course instructor, group work, distance learning tasks, peer assessments

Language

German

13

LectureSWSECTS
Master Thesis MT

Master Thesis MT

0SWS
20ECTS

Lecture contents

- Independent work on a subject-relevant topic at a scientific level under the guidance of a supervisor.
- Preparation of the Master Thesis

Assessment methods

Final exam
Approval of the Master Thesis

Teaching methods

Preparation of the Master Thesis

Language

German

020
Accompanying Seminar for Master Thesis SE

Accompanying Seminar for Master Thesis SE

2SWS
3ECTS

Lecture contents

- Accompanying the students in their Master Thesis assignments
- Presentation of excerpts from the Master Thesis
- Individual interviews and group discussions to reflect on experiences and procedures

Assessment methods

Final exam
Participated with or without success

Teaching methods

Seminar

Language

German

23
Master colloquium AP

Master colloquium AP

0SWS
2ECTS

Lecture contents

Independent preparation for the oral Master's examination

Assessment methods

Final exam
oral Master's examination

Teaching methods

-

Language

German

02
Safety and Risk Management in Business Practice SE

Safety and Risk Management in Business Practice SE

4SWS
5ECTS

Lecture contents

- Presentation of practical examples and handling of R&D by company representatives from the following areas- Automotive
- Railway
- Air Traffic Control
- Mechanical and plant engineering
- Process technology
- Medical technology and much more

- Excursions

Assessment methods

Continuous assessment
Continuous assessment of classroom performance: 50%
Presentation: 50%

Teaching methods

Seminar

Language

German

45

Semester dates
Winter semester: September to end of January
Summer semester: Mid of February to July

Times
block instruction on weekends (Friday and Saturday, approx. 2 blocks per month)

Language of instruction
German


Admission

  • Bachelor's or diploma degree at a university with a total of 180 ECTS and at least 40 ECTS credits from electrical engineering / electronics information technology, mechanical engineering or comparable. In exceptional cases the course organizer decides.
  • Equivalent certificate from abroad
    • Equivalence is determined by international agreements, validation or in individual cases a decision by the head of the academic section.

Regulation for the admission of third country citizens (PDF 233 KB)

Information for applicants with non-Austrian (school) certificates (PDF 145 KB)

To apply you will require the following documents:

  • Birth certificate
  • Proof of citizenship
  • Certificate of bachelor or diploma degree / equivalent foreign certificate
  • CV in table form

 

Please note:
It is not possible to save incomplete online applications. You must complete your application in one session. Your application will be valid as soon as you upload all of the required documents and certificates. In the event that some documents (e.g. references) are not available at the time you apply, you may submit these later via email, mail or in person by no later than the start of the degree program.

The admission procedure consists of an interview with the admission committee. The recording interviews are done via Skype.

  • Goal
    The aim is to ensure places are offered to those persons who complete the multi-level admission procedure with the best results. The tests are designed to assess the skills needed for your chosen profession.
  • Criteria
    The criteria for acceptance are based solely on performance. The geographical origin of the applicant has no influence on the admission decision. The admission requirements must be met in all cases. The admission committee (which comprises, among others, the head of the academic section and representatives of the teaching staff) awards places to the applicants who score highest in the tests. The process as a whole and all test and assessment results from the admission procedure are documented in a transparent and verifiable manner.

Studying with disabilities

If you have any questions regarding accessibility or if you have a specific need in the admission procedure due to an impairment, please contact Ursula Weilenmann for organizational reasons as early as possible at barrierefrei@fh-campuswien.ac.at.

Since we try to take into account individual needs due to disabilities when conducting the written admission test, we ask you to indicate in your online application to Weilenmann in which form you require support.

Your contact person in the department Gender & Diversity Management
Mag.a Ursula Weilenmann, Mitarbeiterin
barrierefrei@fh-campuswien.ac.at
http://www.fh-campuswien.ac.at/barrierefrei

 


Contact

Secretary's office

Mgr. Andrea Slaminková
Favoritenstraße 226, B.3.05
1100 Vienna
T: +43 1 606 68 77-8455
F: +43 1 606 68 77-8459
sse@fh-campuswien.ac.at

Map main campus Favoriten (Google Maps)

Office hours during the semester
Wed, 2.00 p.m.-6.00 p.m.
Thu and Fri, 10.00 a.m.-5.00 p.m.

Personal consultation via Zoom

Make an appointment with our office for a personal consultation with study program director Hans Tschürtz via Zoom.

Teaching staff


Cooperations and Campusnetzwerk

We work closely with renowned companies in commerce and industry, with universities, institutions and schools. This guarantees you contacts for employment or participation in research and development. You can find information about our cooperation activities and much more at Campusnetzwerk. It's well worth visiting the site as it may direct you to a new job or interesting event held by our cooperation partners!

Campusnetzwerk