Overview From traffic light control via laptops down to Smartphones - electronics are everywhere and electronic devices pervade virtually all spheres of our lives, enhancing our quality of life. The Applied Electronics degree program will introduce you to all the technologies in which electronics are playing a role. You may specialize in environmental technology or in automation.Apply nowContact usContact us!Mag.a Andrea WinkelbauerFavoritenstraße 226, B.3.251100 ViennaT:+43 1 606 68 77-2110F: +43 1 606 68 77-2119elektronik@fh-campuswien.ac.atMap main campus Favoriten (Google Maps)Office hours during the summer semester:By telephone appointmentAnrede Frau Herr Vorname *Nachname *E-Mail address *Nachricht *AbsendenIhre E-Mail wurde versendetDuration of course6 SemestersOrganisational formpart-time180ECTSLanguage of instruction German35Study placesFinal degreeBachelor of Science in Engineering (BSc)Application period for academic year 2022/231st October 2021 to 7th August 2022tuition fee / semester:€ 363,361+ ÖH premium + contribution2 1 Tuition fees for students from third countries € 727,- per semester 2 for additional study expenses (currently up to € 83,- depending on degree program and year) What you can offer You have an intrinsic interest in technical systems and their functionality. You are enthusiastic about electronics in general and its many applications in everyday life. You are convinced that the potential has not been exploited by far, which is why you enjoy tinkering with innovations. Subjects such as mathematics, C programming or the course in "Electronic equipment design" stimulate you to implement your ideas and offer practical experience to assist you in your professional challenges. The specialized courses in environmental technology or automation are sure to offer something of interest to you. What we offer you We cooperate closely with renowned companies in commerce and industry. You may benefit from this in many ways: Our research and development laboratories set up by Phoenix Contact, an internationally operating company in the field of electrical engineering and automation, are state-of-the-art. This guarantees diversified teaching and learning in automation technology. A number of interesting companies and cooperation partners are furthermore represented at our "Firmentag Technik" (Company day Technology) at the main FH Campus Vienna. Make use of the time between your courses to socialize, to establish ties for your professional future and to enter into discussions with potential employers. You will participate in R & D projects, helping to shape the dialog between practice and science at the FH. We will also gladly support you in finding contacts for your internship or studies abroad. You will in this respect benefit from our extensive networking with international universities. We will support you towards realizing your ideas for exciting projects and offer you a stage: We showcase the best projects to a wide audience in our Campus Innovation Lab at the Open House or at the BeSt trade fair. Practical relevance is also guaranteed through our Campus Lecture evenings which are open to all and offer contributions by prominent experts. What makes this degree program special Specializations in Environmental Technology or Automation TechnologyTop infrastructure: From the photovoltaic system on the roof of FH Campus Wien to the Phönix Contact Competence Center for automationAdditional offer: Certifications requested by the industryThe degree program's strong practical orientation is a defining advantage. We have extensive projects running in our laboratories and test and measurement facilities. In our environmental technology specialization field, students are working with a photovoltaic demonstration and research system. The panels are installed on the roof of the FH Campus Wien and inject renewable power into the local network. This offers our students the opportunity of learning and researching based on a practical photovoltaic system in operation. Another benefit offered to students is the facility of using computer simulations to carry out experiments and research projects at any time, irrespective of the weather.Our new Phoenix Contact Technology Competence Center will satisfy all your needs for learning and research in automation, the second field of specialization.Within the framework of this degree program, we also offer the opportunity of obtaining certifications such as the LabView Certificate, PMA Project Management Austria Level D or the Process Management Certificate, all of which are in high demand in industry. What you will learn in the degree program In addition to a thorough technically training, you will also learn about decision and leadership competency, so important in our industry. You will obtain the project management qualifications you need for complex and planning activities.In three semesters of basic studies you will deal with the theoretical fundamentals of mathematics, electronics and electrical engineering as well as with economics, personal development and management. Business English is part of your basic competency.In the fourth semester you will select you specialization (from the fourth to the sixth semester):Automation: You will learn to develop automation systems for technical processes and deal with the basics of reliability, safety and process control. In seminar projects, you will deal with concrete examples of practical automation.Environmental technology: You will learn more about processes and interrelationships, cycles of materials and variables affecting eco systems and will gain comprehensive insights into environmental framework conditions for the ecological design of electronic devices. Concepts for alternative generation and storage of electrical energy and the utilization of renewable energy round off this specialization field.The sixth semester comprises an internship of seven weeks. An existing career in this field may qualify you for a credit. Curriculum 1. Semesters LectureSWSECTSBasics of Business English UEBasics of Business English UE1SWS2ECTSLecture contentsThe focus of the training is on the following four language competence areas: 1) Listening (working with audio-visual media), 2) Reading (text comprehension, working with newspaper articles in the field and business), 3) Writing (business correspondence with emphasis on new media, text production, analysis, commentary, etc.), 4) Speaking (students should be able to express themselves adequately, confidently and as accurately as possible in English in a professional environment). Students will learn to express themselves adequately in English in the following content areas: - Presentation techniques - Organisation: Talking about your company and company structure - Cultures and cultural awareness for business travellers - Social English - TelephoningAssessment methodsFinal exam Written exam Peer-presentation Classroom participation Distance LearningTeaching methodsUELanguageEnglish12Programming in C ILVProgramming in C ILV3.5SWS6ECTSLecture contentsWithout group division: Fundamentals of programming, concept of algorithm. Structure and conception of a computer system. Programming using C programming language, instruction set of C, static and dynamic data structures, basics pointers and simple application. In group division: Practical implementation of the taught basics through guided and independent solving of tasks on the computer, simple and more complex data structures, analysis of algorithms, use of library functions. Use of programming interfaces.Assessment methodsContinuous assessment Immanent examination characterTeaching methodsILVLanguageGerman3.56Digital Technology ILVDigital Technology ILV2.5SWS4ECTSLecture contents- Number Representations - Boolean algebra (introduction) - Basic logic circuits and gates - KV diagram - Selected circuits of static logic - Switching circuits (counters, shift registers, state machines, ...)Assessment methodsFinal exam Immanent examination characterTeaching methodsILVLanguageGerman2.54Electronics Laboratory I UEElectronics Laboratory I UE3SWS5ECTSLecture contentsPractical applications of the contents covered in the theory courses "Fundamentals of Electronics" and "Digital Technology". For individual laboratory exercises, tasks are to be solved in the preparation phase, which are then to be practically implemented and metrologically verified during the laboratory exercise. For each laboratory exercise, the evaluated measurement results and findings are to be documented in a protocol.Assessment methodsFinal exam Written exam at the end of the courseTeaching methodsExercices at the laboratoryLanguageGerman35Fundamentals of Electrical Engineering 1 ILVFundamentals of Electrical Engineering 1 ILV4SWS6ECTSLecture contentsSI units, charge, current density, definition of current and voltage, ohmic resistance, ohmic law, electrical power, electrical work, voltage source, current source, real vs. ideal sources, resistor networks, Kirchhoff's rules, network calculations, superposition principle, equivalent sources, controlled sources, power matching. resistors: construction, selection criteria, labelling/colour code, equivalent circuit, temperature dependence, thermal resistance, non-linear resistors Transient processes with capacitors and coils diode: Doping, pn junction, rectifier circuits, Z diode, LEDs, photodiode, capacitance diode. transistor: bipolar transistor, FET, structure, function, characteristics, transistor as switch, thyristorAssessment methodsContinuous assessment Immanent examination characterTeaching methodsILVLanguageGerman46Learning strategies and working methods 1 ILVLearning strategies and working methods 1 ILV1SWS3ECTSLecture contentsThe students reflect on the essential contents of the first semester and learn about different learning methods. They can try out these different learning methods and thus see which type and form of learning is best suited for each individual student.Assessment methodsFinal exam The work of the individual students is reflected upon in a discussion.Teaching methodsIntegrated courseLanguageGerman13Mathematics I ILVMathematics I ILV3SWS4ECTSLecture contentsNatural numbers, real numbers, complex numbers Concept of functions, elementary functions: Polynomial functions, rational functions, exponential, logarithmic and trigonometric functions. Differential and integral calculus in one variable Taylor expansion Partial fraction decomposition Differentiation and integration in practiceAssessment methodsContinuous assessment Immanent examination characterTeaching methodsILVLanguageGerman34 2. Semesters LectureSWSECTSDigital Systems ILVDigital Systems ILV2SWS4ECTSLecture contents- Logic families - Circuit technology of digital circuits - Memory technologies - Interface circuits - Analog-digital conversion, digital-analog conversion - Basics of network technology - OSI reference model - Data transmission (codecs, standards and test methods)Assessment methodsContinuous assessment Immanent examinationTeaching methodsILVLanguageGerman24Electronics Laboratory 2 UEElectronics Laboratory 2 UE3SWS4ECTSLecture contentsPractical applications of the contents covered in the theory courses "Components of Electronics" and "Digital Systems". For individual laboratory exercises, tasks are to be solved in the preparation phase, which are then to be practically implemented and metrologically verified during the laboratory exercise. For each laboratory exercise, the evaluated measurement results and findings are to be documented in a protocol.Assessment methodsFinal exam Written exam at the end of the course.Teaching methodsExercices at the laboratoryLanguageGerman34Advanced C-Programming VOAdvanced C-Programming VO1SWS1ECTSLecture contentsKnowledge of advanced C programming, static and dynamic data structures, sorting techniques, mastery of pointer concepts and pointer arithmetic, pointers to functions and pointers to higher data structures, bit operators. Discussion of common errors in SW development and how to avoid them.Assessment methodsFinal exam LV final final examinationTeaching methodsLectureLanguageGerman11Advanced C-Programming UEAdvanced C-Programming UE1.5SWS3ECTSLecture contentsPractical implementation of the taught basics through guided and independent solving of tasks in the area of pointer concepts and pointer arithmetic, pointers to functions and pointers to higher data structures as well as bit operations. Practical application of methods and principles of SW tests and source documentation.Assessment methodsContinuous assessment Immanent examination characterTeaching methodsUELanguageGerman1.53Fundamentals of Electrical Engineering 2 ILVFundamentals of Electrical Engineering 2 ILV4SWS6ECTSLecture contentsDefinition and quantification of alternating variables, arithmetic mean, rectifier, rms, capacitor, inductor, impedance, network calculations, transfer function, low pass, high pass. Capacitor and Coil: Construction, selection criteria, equivalent circuit Transistor: transistor amplifier, emitter circuit, collector circuit, B-amplifier OPV: ideal OPV, inverting amplifier, non-inverting amplifier, summer, impedance converter, comparator, integrator, differentiator, characteristics of real OPVs definition of magnetic field, characteristics of magnetic field, matter in magnetic field, induction, coupled inductances, transformerAssessment methodsContinuous assessment Immanent examination characterTeaching methodsILVLanguageGerman46Intermediate Business English UEIntermediate Business English UE1SWS2ECTSLecture contentsStudents learn to express themselves adequately in English in the following content areas: - Recruitment, - job applications - CV and cover letter - Job interviews and salary negotiations Students will become familiar with recruitment methods and with the specifics of job applications and CVs in English-speaking countries. The students write application documents and actively go through the various application steps.Assessment methodsFinal exam Class participation Distance learning Final examTeaching methodsUELanguageEnglish12Learning strategies and working methods 2 ILVLearning strategies and working methods 2 ILV0.5SWS2ECTSLecture contentsThe students reflect on the essential contents of the first semester and learn about different learning methods. They can try out these different learning methods and thus see which type and form of learning is best suited for each individual student.Assessment methodsFinal exam The work of the individual students is reflected upon in a discussion.Teaching methodsIntegrated courseLanguageGerman0.52Mathematics II ILVMathematics II ILV2.5SWS4ECTSLecture contentsCalculating with vectors, matrices Introduction to a computer algebra system (e.g. MATLAB) Linear systems of equations with application to practical problems Functions in two and more variables, partial derivatives and gradients as well as the arithmetic operations divergence and rotation (in Cartesian coordinates as well as in cylindrical and spherical coordinates) Coordinate transformation (Cartesian coordinates, polar coordinates, cylinders and spherical coordinates) Basics of curve and range integrals Integration in 2 and 3 dimensions, integral theorem of Gauss and Stokes Determination of extreme values with and without constraintsAssessment methodsContinuous assessment Immanent examination characterTeaching methodsILVLanguageGerman2.54Physics and Sensor Technology I ILVPhysics and Sensor Technology I ILV2.5SWS4ECTSLecture contentsBasics of mechanics: Velocity and acceleration, forces, energy, work, power, conservation laws, friction, dynamics of rigid bodies; sound as well as hydrodynamics as well as the necessary mathematical principles; Basics of sensors as well as structure and functional principles of corresponding sensors (pressure, force, acceleration, displacement and angle sensors, etc...) Ultrasonic sensors, flow sensors, etc... with calculation exercises; Basics of thermodynamics: Basic quantities of thermodynamics, main theorems of thermodynamics, heat transport and heat transfer; Corresponding sensors (structure and mode of operation) for temperature measurement, humidity sensors, etc... are treated with calculation exercises;Assessment methodsContinuous assessment Immanent examination characterTeaching methodsILVLanguageGerman2.54 3. Semesters LectureSWSECTSMathematical Methods of Electrical Engineering ILVMathematical Methods of Electrical Engineering ILV2.5SWS6ECTSLecture contentsSignal and System Theory Fourier Series/Fourier Transform Laplace transform General theory of differential equations Solution methods for (ordinary) linear differential equations Numerics Applications in science and technologyAssessment methodsContinuous assessment Immanent examination characterTeaching methodsILVLanguageGerman2.56Physics and Sensor Technology II ILVPhysics and Sensor Technology II ILV2SWS5ECTSLecture contentsBasics of electrostatics and magnetostatics as well as electrodynamics and the mathematical fundamentals; Contents are among others: electric and magnetic fields, Maxwell's equations, electrodynamic potentials, electric and magnetic flux, circulation, electric and magnetic voltage, electric and magnetic forces, flow law, Lorentz force, law of induction, electromagnetic waves in vacuum and in matter, radiation and propagation of electromagnetic waves (Hertzian dipole, multipole radiation, characteristic impedance, antennas....), electric currents, continuity equation, vector potential, Biot-Sarvat law etc...; Sensor technology: structure and function of inductive sensors, magnetic field sensors, capacitive sensors, measurement of electric and magnetic fields as well as corresponding computational exercises on the topics.Assessment methodsContinuous assessment Immanent examination characterTeaching methodsILVLanguageGerman25Programming of Microprocessors UEProgramming of Microprocessors UE2SWS3ECTSLecture contentsSolve exercises with given Hardware (STM32 - ARM Cortex M4) by programming the controller in C. Fundamentals of microcontrollers, components of an actual microcontroller (timer, NVIC, ADC, UART,..) and LCD display.Assessment methodsContinuous assessment Immanent examination characterTeaching methodsHands on examplesLanguageGerman23Programming of Microprocessors VOProgramming of Microprocessors VO1.5SWS2ECTSLecture contentsIntroduction to the architecture of microcontrollers (µC). Modern 8- and 32-bit µC systems are introduced (Arduino and STM32) as well as common peripherals available on these µC (NVIC, DMA, GPIO, Timer, ADC, ...) and their functionalities. Special features and peculiarities of programming µC are discussed.Assessment methodsFinal exam Written exam at the end of the course.Teaching methodsLecture combined with distance learningLanguageGerman1.52Control Engineering ILVControl Engineering ILV2.5SWS5ECTSLecture contentsIntroduction and basic terms Classification of controlled systems System identification Control loop structures Stability criteria Controller design (computer aided) Discontinuous controllersAssessment methodsContinuous assessment Immanent examination character with final written exam.Teaching methods- Lecture notes - Presentation with beamer - Solving problems using MATLAB - Discussion - Step-by-step explanation of complex contents on the whiteboardLanguageGerman2.55Applied Electronic Circuit Design ILVApplied Electronic Circuit Design ILV3SWS5ECTSLecture contentsLinear voltage regulator DC-DC Converter Signal theoretical consideration of amplifiers Power amplifier (push-pull output stage) Circuits with operational amplifiers (e.g. active filters, current sources/current sinks, active rectifiers, limiter circuits, linearization circuits, function generators, interface circuits) Non-ideal properties of operational amplifiers and circuit-technical measures Stability of operational amplifiersAssessment methodsFinal exam Final examTeaching methodsLecture with Laptop, Beamer and explanations on whiteboardLanguageGerman35Electrical Metrology ILVElectrical Metrology ILV2.5SWS4ECTSLecture contentsMeasurement of direct and alternating currents/voltages Measurement of resistances and impedances Bridge circuits Two-/four-wire measurement Measurement uncertainty, measurement error, error propagation Measuring amplifier Time and frequency measurement Analogue-Digital-Converter, Digital-Analogue-Converter Oscilloscope Measurement of signal spectra Automated measurement systems Practical applications of the contents dealt with in the theory part, are set up and measured in laboratory exercises Documentation and interpretation of measurement results in laboratory protocols.Assessment methodsContinuous assessment Immanent examination characterTeaching methodsILVLanguageGerman2.54 4. Semesters LectureSWSECTSActuators VOActuators VO1SWS2ECTSLecture contentsBasics as well as classification and structure of actuators Functional and conversion principles of actuators Basics of power transmission and mechanical energy transmission with gears incl. spindle drives, efficiency, losses, self-locking ... General possibilities of energy and power transmission with actuators Linear actuators and rotary actuators Hydro-actuators (valves and motors) Thermoelectric actuators (Peltier element) Calculation principles of magnetic circuits for electrical machines and actuators (magnetic actuators, magnetic valves) as well as electromagnetic actuators Piezo actuators and piezo motors (piezoelectric injection valves, ultrasonic transducers, inchworm motors, Legs motors) Stepper motors (reluctance stepper motors, permanent magnet stepper motors, hybrid stepper motors) DC machine and basics of electric rotating field machines Micro-actuators as well as novel and unconventional actuators and their functional principles and structureAssessment methodsFinal examTeaching methodsVOLanguageGerman12Applied Microcontroller Programming UEApplied Microcontroller Programming UE1SWS4ECTSLecture contentsApplied µC programming: read and interpret sensor data, implementaion and application of two-wire bus systems (I²C, SPI). Special tricks and techniques of µC programming are introduced and discussed.Assessment methodsContinuous assessment permanent assessmentTeaching methodspractical exerciseLanguageGerman14Automation of Technical Processes I ILVAutomation of Technical Processes I ILV1.5SWS2ECTSLecture contentsBasic terms, device and programming structure of a process automation system, procedure for creating software systems with real-time requirements, introduction to the handling of automation projects. Concept of a programmable logic controller, introduction to the creation of PLC programs, measures for efficient programming and shortening the engineering phase, diagnosing hardware faults (replacing modules), targeted troubleshooting, adapting machine/system to new conditions, rapid localization of faults (emergency operation), efficient programming, outlook on operating and monitoring, basis of decentralized peripherals, exercises: PLC programmingAssessment methodsContinuous assessment immanent assessmentTeaching methodsimmanent assessmentLanguageGerman1.52Design of Electronic Devices 1 ILVDesign of Electronic Devices 1 ILV2SWS5ECTSLecture contentsIntroduction to the design process of electronic circuits / assemblies / products. Getting to know the procedure for creating / fixing and maintaining functional or device requirements. Types and context of documentation of development results. Typical divisions and functions of individual departments in a research and development company. Peripheral departments and their influence on development (e.g. service, life cycle support, etc.).Assessment methodsContinuous assessment Immanent examination characterTeaching methodsILVLanguageGerman25Power Electronics ILVPower Electronics ILV2SWS3ECTSLecture contentsPower supplies, DC-DC converters, transistor bridges, motor control bridge, inverters, class-D amplifiers. Transistors and their switching behaviour, capacitors and inductors for power electronics Electromagnetic compatibility, layout and filtering Losses, thermal design and coolingAssessment methodsFinal exam LV final final final final final final final final final final final final final final final final final final final final final final final final final final final final finalTeaching methodsILVLanguageGerman23Photonics and Optoelectronics VOPhotonics and Optoelectronics VO2SWS4ECTSLecture contentsLight as an electromagnetic wave as well as light as a particle (photon), interference, coherence, diffraction as well as dispersion of light, physical basics of optics, radiation evaluation especially the basics of photometry as well as radiation laws, interaction of light and matter, light generation in conventional light sources (incandescent lamps, gas discharge lamps, ...), light generation in semiconductors as well as semiconductor devices e.g.. LED, ..., light generation in lasers, optical radiation and effects of nonlinear optics, photo detection and optical components (components of optics and optoelectronics) as well as physical basics of optical sensors, overview of optical sensors (fiber optic sensors, ...) and their most important applications as well as corresponding calculation exercises (calculation examples) for the corresponding topics; Transmission of electromagnetic waves in optical fibers (generation, attenuation and detection)Assessment methodsFinal exam LV final final inspectionTeaching methodsVOLanguageGerman24Circuit and System Design UECircuit and System Design UE2.5SWS4ECTSLecture contents- Introduction and basic concepts of computer-aided tools (EDA, CAD, CAE); - Computer simulation of electronic circuits with different complexity - Development of new simulation models for special components based on their specification - Computer aided circuit board design by means of a logic circuit, simulation and circuit board design software - Computer-aided system designAssessment methodsContinuous assessment Immanent examination characterTeaching methodsExcerciseLanguageGerman2.54Circuit Design Laboratory UECircuit Design Laboratory UE2SWS4ECTSLecture contentsPractical applications of selected contents of the theory course "Applied Circuit Technology". Documentation and interpretation of measurement results in laboratory protocols.Assessment methodsFinal exam LV final final examinationTeaching methodsExcercices at the laboratoryLanguageGerman24Technical English 1 UETechnical English 1 UE1SWS1ECTSLecture contentsStudents learn how to present professional articles from different areas of Electronics in English. Thereby students learn the relevant professional vocabulary and get to know specific technical content.Assessment methodsFinal exam presentations class participation final examTeaching methodsUELanguageEnglish11Scientific Research for Graduation Candidates VOScientific Research for Graduation Candidates VO1SWS1ECTSLecture contents- What is science - Scientific work - Scientific writing - Peer review - Code of ethics - Scientific presentationsAssessment methodsFinal exam * Theory presentationTeaching methods- student presentations (distance learning) - discussion and additions by the lecturerLanguageGerman11 5. Semesters LectureSWSECTSPropulsion systems VOPropulsion systems VO1.5SWS2ECTSLecture contentsBasics of electrical machines: DC machine, asynchronous machine, synchronous machine, reluctance motor, stepper motor. Design, function, operating behaviour, characteristic curves. Design and function of power converters, frequency converters and drives with EC motors.Assessment methodsFinal exam LV final final examinationTeaching methodsVOLanguageGerman1.52Selected Chapters of Electronics I SESelected Chapters of Electronics I SE2SWS3ECTSLecture contentsIn-depth treatment of current, selected topics in applied electronics. In the context of this course, topics of guest lecturers or current research topics of the FH Campus Wien can also be treated. This course offers students the opportunity to participate in internationalisation activities. This course is a further development of the I@H project implemented in 2014.Assessment methodsContinuous assessment intrinsic audit characterTeaching methodsSELanguageGerman23Electrical energy storage VOElectrical energy storage VO1SWS2ECTSLecture contentsFundamentals and structure of electrical and electrochemical energy storage systems. Electrolytic double layer capacitors (EDLC), different secondary cells (lead-acid, lithium-ion, LiFePO4, nickel-metal hydride). Operating characteristics, charging and discharging procedures. Safety aspects, balancing, battery management systems.Assessment methodsFinal exam LV final final examinationTeaching methodsCOLanguageGerman12Design of Electronic Devices I UEDesign of Electronic Devices I UE1.5SWS6ECTSLecture contents- Design of an electronic device based on the previously acquired procedures, including simulation of the essential functions using suitable simulation software. - The development of the device concept takes place in small groups, with own division of tasks under the guidance of the lecturer. - Consideration of the requirements regarding interference immunity (electromagnetic compatibility (EMC) and electrostatic charging and discharging (ESD)) in the device design. Interaction of the different competences, skills and tasks in a development team or in individual work on the basis of a concrete task.Assessment methodsContinuous assessment intrinsic audit characterTeaching methodsUELanguageGerman1.56Project Management ILVProject Management ILV1SWS2ECTSLecture contentsIntroduction to the concept of project and the project management approach. Instruments and tools of project management such as delimitation and context analysis, project order, performance, schedule, cost/resource planning, project organisation and related communication structures. Getting to know the essential processes (assignment, start, controlling, closing, marketing) in project management as well as methods of design. Introduction to the basic concepts and fundamentals of organisations, in-depth knowledge of structural and process organisation, organisational culture, forms of work organisation (e.g. MbO, job rotation) group/teams as well as strategic management.Assessment methodsContinuous assessment Immanent examination characterTeaching methodsILVLanguageGerman12Technical English 2 UETechnical English 2 UE1SWS2ECTSLecture contentsStudents learn how to present professional articles from different areas of Electronics in English. Thereby students learn the relevant professional vocabulary and get to know specific technical content.Assessment methodsFinal exam presentations class participation final examTeaching methodspresentations, discussions, q+aLanguageEnglish12Economy ILVEconomy ILV2SWS3ECTSLecture contentsDivisions of economics, general business administration; business administration techniques e.g. cost accounting; special business administration e.g. trade; functional business administration e.g. financing; definition and division of accounting (bookkeeping, accounting, cost accounting); areas of marketing, personnel, procurement - storage - production, investment and financing, management and organisation. Derivation of costs from accounting (cost-type accounting), allocation of costs to internal service areas (cost-centre accounting), determination of cost-covering prices (cost-unit accounting), determination of the cost-unit profit and the profit for the period. Determination of financing-related data from accounting, delimitation of the areas of financing and investment; internal and external financing; equity and debt financing, alternative forms of financing; basics of financial mathematics.Assessment methodsContinuous assessment Immanent examination characterTeaching methodsILVLanguageGerman23 Specialization AutomatisierungstechnikLectureSWSECTSAutomation of Technical Processes II ILVAutomation of Technical Processes II ILV3SWS5ECTSLecture contentsteaching the operations in an automation project, calculation of hard- and software cost as well as engineering and project management modelling of automation tasks, project management especially for automation-projects, special automation topics: weighing ... kpi and benchmarking, engineering tasks in an automation projects practical exercisesAssessment methodsContinuous assessment LV Immanent Examination CharacterTeaching methodsILVLanguageGerman35Programmable Logic Control Systems and Control Systems ILVProgrammable Logic Control Systems and Control Systems ILV3SWS5ECTSLecture contentsDesign and implementation of distributed automation systems (component technology, OPC UA), operation and monitoring (local and via Internet), soft PLC, real-time behaviour, safety controllers, Exercises: PLC programming, maintenance diagnostics - In-depth PLC hardware and software. - Intelligent modules (counters, axis cards, ...) - Principle communication possibilities on process and field level - Presentation of the five IEC 61131 languages plus exercises for LD, FBD, ST and SFC - Design and dimensioning of central and distributed control systems in theory and practice. - Discussion of concrete hardware (Phoenix Contact) - Dimensioning calculation of a concrete project in the context of exercisesAssessment methodsContinuous assessment intrinsic audit characterTeaching methodsILVLanguageGerman35 Specialization UmwelttechnikLectureSWSECTSEnergy efficiency and climate protection strategies ILVEnergy efficiency and climate protection strategies ILV1.5SWS2ECTSLecture contentsEnergy efficiency terms, 20-20-20 targets of the European Union, energy efficiency labelling of products, greenhouse gases and their impact on the global climate. World climate reports, CO2 balance of the energy supply chain, CO2 certificate trading, ecological footprint, energy management systems according to ISO50001, identification of energy saving potentials, rebound effect, smart technologies in the field of energy efficiency, economic aspects of energy efficiency and climate protection strategies, political instruments in the field of energy efficiency and climate protection strategiesAssessment methodsFinal exam LV finalTeaching methodsILVLanguageGerman1.52Fundamentals of Renewable Energy Sources ILVFundamentals of Renewable Energy Sources ILV2SWS3ECTSLecture contentsEnergy section: Energy concept, different units in the energy economy, differentiation between exergy and anergy, systematisation of renewable energies, Carnot efficiency, energy balance in Austria Wind energy section: Power potential of moving air masses, measurement of wind speed, high-altitude wind profile, frequency distribution of wind speed, usable wind power (impulse theory according to Betz) Solar radiation section: Quantification of solar radiation, Earth's energy balance, Atmosphere as an optical filter, Radiation components (direct radiation, diffuse radiation), Sun position diagram, Radiation components on inclined surfaces, Tracking of receiving surfaces, PVGIS, Measurement of solar radiation.Assessment methodsFinal exam LV finalTeaching methodsILVLanguageGerman23Eco Design VOEco Design VO1SWS2ECTSLecture contentsGeneral introduction to the term eco-design, necessity of eco-design in sustainable product design with focus on electronic/electrotechnical products, characteristics of ecological product and process improvements, strategies to support systematic ecological product improvement (eco-design process), design for disassembly of electronic and electrotechnical products, disassembly processes, design for non-disassembly, recycling rate, introduction to the most important design guidelines for the selection of materials and surface treatments for electronic and electrotechnical products, environmentally friendly design of packaging. Best practice example of eco-design for electronic and electrotechnical products.Assessment methodsFinal exam LV finalTeaching methodsLV final final final final final final final final final final final final final final final final final final final final final final final final final final final final finalLanguageGerman12Environmental Protection in Production ILVEnvironmental Protection in Production ILV1.5SWS3ECTSLecture contentsThe austrian way of environmental protection for producing companies in the electronic industryAssessment methodsFinal exam LV finalTeaching methodsILVLanguageGerman1.53 6. Semesters LectureSWSECTSSelected Chapters of Electronics II SESelected Chapters of Electronics II SE2SWS3ECTSLecture contentsIn-depth treatment of current, selected topics in applied electronics. Within the framework of this course, topics from guest lecturers or current research topics of the FH Campus Wien can also be dealt with.Assessment methodsContinuous assessment Immanent examination characterTeaching methodsSELanguageGerman-English23Bachelor Thesis SEBachelor Thesis SE1SWS8ECTSLecture contentsWriting a scientific paper in an area of electronics.Assessment methodsContinuous assessment Immanent examination characterTeaching methodsSeminarLanguageGerman18Professional Practical Training PRProfessional Practical Training PR0.5SWS10ECTSLecture contentsThe students carry out a relevant practical work in a company in the field of electronics/automation technology or environmental technology. The concrete procedure for carrying out the internship is agreed with the respective company in which the internship is carried out. The technical orientation of the work must be related to the contents of the degree programme.Assessment methodsContinuous assessment Immanent examination characterTeaching methodsPRLanguageGerman0.510Electro-Mobility VOElectro-Mobility VO1SWS2ECTSLecture contentsStorage technologies, storage management, energy use in driving, energy use for comfort functions, electric drives in e-vehicles, hybrid concepts, assistance systems in vehicles, charging technologies, mobility concepts, ecological aspects of electromobility, funding landscape for electromobility in Austria and internationally, interaction between people and mobility, current market overview in the field of electromobilityAssessment methodsFinal exam LV finalTeaching methodsVOLanguageGerman12Civil and Patent Law VOCivil and Patent Law VO1SWS1ECTSLecture contentsBasic structure of Austrian private law. The focus is on the contract as a central creative instrument, prerequisites for a valid conclusion of a contract, different types of contracts, special features of consumer protection law and their economic significance. Another focus is on tort law and product liability law. This includes the problem area of the relationship between producer and trader liability. Basic features of patent, trademark and design protection law as well as copyright law. The second subject area is the legal protection of intellectual property.Assessment methodsFinal exam Final ExaminationTeaching methodsLecture courseLanguageGerman-English11Product Life Cycle Management VOProduct Life Cycle Management VO1SWS2ECTSLecture contents- Introduction to the different lifecycle phases of an electronic component / assembly and a complete device. - Requirements of the production to the electronic assembly as well as its test and analysis structure. Consideration of these boundary conditions for a cost and resource efficient design of electronic assemblies and systems. - Influence of service & diagnostic requirements on the design of electronic assemblies and systems. - Modern test and analysis systems for electronic circuits and assemblies. - Recycling of electronic assemblies and devices (legal framework and design guidelines). - Banned Substances in the field of electronics - alternative products as well as application.Assessment methodsContinuous assessment Immanent examination character, participation, attendance - 20% of the overall grade Term paper - 30% of the overall grade Written exam - 50% of the overall gradeTeaching methodsLecture, term paper, exhibits, videos, elaboration of scientific terms.LanguageGerman-English12 Specialization AutomatisierungstechnikLectureSWSECTSHuman Machine Interfaces ILVHuman Machine Interfaces ILV1.5SWS2ECTSLecture contentsOperation of control systems - Control panel (text, semi-graphic, full-graphic, touch displays) Signalling options in control systems - conventional types of signalling (from light columns to LEDs) complex control systems, design guidelines for the creation of user interfacesAssessment methodsContinuous assessment LV-immanent examination characterTeaching methodsILVLanguageGerman1.52Process Control Systems and Field Bus Technology ILVProcess Control Systems and Field Bus Technology ILV1.5SWS2ECTSLecture contentsRequirements for the various levels of communication systems in automation technology, common representatives of industrial communication systems, fieldbuses, process automation and process control systems, planning the use of modern computer-aided design tools. Project planning, testing functions with variables, alarm logging, curve display, measured value archiving, data archiving. SCADA (Supervisory Control and Data Acquisition) basic design and training of a SCADA system based on the ATVISE platform incl. exercises, industrial data management such as reporting (drill-down reports), data processing, OPC server.Assessment methodsContinuous assessment LV Immanent examination characterTeaching methodsILVLanguageGerman1.52 Specialization UmwelttechnikLectureSWSECTSTechnologies for the Utilization of Renewable Energy Sources ILVTechnologies for the Utilization of Renewable Energy Sources ILV1.5SWS2ECTSLecture contentsSub-area of photovoltaic system technology: Function of solar cell, characteristics of solar cells, function, structure and properties of PV modules, PV generator, basic function of PV inverter, efficiency of PV inverter, PV inverter as grid manager, PV inverter concepts, planning principles and designs of grid-connected PV systems, coordination of PV generator with PV inverter, lightning protection of PV systems, current product and market overview of PV components. Sub-area wind power plant technology: Wind turbine concepts, aerodynamics of rotor, drag rotor, lift rotor, lightning protection of wind turbines, structure of rotor of wind turbines, power curve of wind turbines, power control of wind turbines, yield determination of wind turbines, tower designs of wind turbines, foundation variants, drive train, gearbox, generator concepts, grid integration of wind turbines, current market overview of wind turbines. Sub-areas to be worked out by the students: Seminar topics: Solar collectors, solar thermal systems, heat pumps, hydrogen, large-scale energy storage, large-scale and small-scale hydropower, biogas, biofuels.Assessment methodsContinuous assessment Immanent examination characterTeaching methodsILVLanguageGerman1.52Environmental Metrology ILVEnvironmental Metrology ILV1.5SWS2ECTSLecture contentsMeasurements of relevant environmental variables, physical measurement principles or measurement methods, market relevant measurement devices for the different measurement methods, accuracy of measurement methods, processing of measurement data, integration of sensors and measurement devices into existing networks. relevant environmental variables: Air quality and quality, CO2 and CO measurement, oxygen measurement, exhaust gas analysis, gas monitoring, gas analysis, dust measurements, aerosol measurement. humidity measurement, pH measurement, water analysis, pressure and differential pressure measurement, measurement of radioactive substances, sound level measurement, volume flow measurement, light measurement, temperature measurementAssessment methodsFinal exam LV finalTeaching methodsILVLanguageGerman1.52Number of teaching weeks18 per semesterTimes Monday, Tuesday, Wednesday und Friday from 5.30 p.m. to 8.45 p.m. and on certain Saturdays from 8.30 a.m.-5.00 p.mElectivesSelection and participation according to available places. There may be separate admission procedures. How you benefit The fields of electronics, electrical and environmental technology are booming. The need for new products, services and applications is driving the creation of many jobs for well-qualified experts. The current demand of companies for FH degree program graduates exceeds supply by far. This will naturally facilitate your entry into this professional niche. The degree program is also a solid basis for the assumption of managerial responsibilities after your professional experience and continuing education. Your future career From equipment design to finished product, from concept to simulation - national and international project planning and handling in the field of electronics, electrical and information technology will characterize your future career. You will in future find yourself in the following fields of industry:Communications technologyTelecommunications technologyComputers and system technologyMedical technology Energy and environmental technology Automation Master's degree programs Electronic Systems Engineering Master, part-timemoreIT-Security Master, part-timemoreTechnical Management Master, part-timemoreHealth Assisting Engineering Master, part-timemoreSafety and Systems Engineering Master, part-timemoreGreen Mobility Master, part-timemore Admission Admission requirements General higher education entrance qualification: University entrance qualification or degree from a general or vocational secondary schoolUniversity entrance exam (Berufsreifeprüfung)Equivalent certificate from abroad Equivalence is determined by international agreements, validation or in individual cases a decision by the head of the academic sectionUniversity entrance qualification exam for Electrical Engineering or Information Technology Information and institutes offering courses in preparation for the university entrance exam (Studienberechtigungsprüfung) can be found on the portal Erwachsenenbildung.at of the Federal Ministry of Education, Science and ResearchErwachsenenbildung.atAustrian Federal Ministry of Education, Science and ResearchRelevant professional qualification and the required auxiliary exams You obtained your professional qualification in the field of apprenticeship groups for electrical disciplines, in secondary vocational schools or as a part-time graduate of the first phase of an HTL (Federal College of Engineering)Regulation for the admission of third country citizens (PDF 224 KB)Information for applicants with non-Austrian (school) certificates (PDF 145 KB) Application To apply you will require the following documents:Birth certificateProof of citizenshipSchool leaving certificate / university entrance qualification exam (Studienberechtigungsprüfung) / verification of professional qualificationsAn abridged CV with photographPlease note: It is not possible to save incomplete online applications. You must complete your application in one session. Your application will be valid as soon as you upload all of the required documents and certificates. In the event that some documents (e.g. certificates) are not available at the time you apply, you may submit these later via e-mail, mail or in person by no later than the start of the degree program. Admission procedure The admission procedure consists of a written test and an interview with the admission committee. Aim The aim is to ensure places are offered to those persons who complete the multi-level admission procedure with the best results. The tests are designed to assess the skills needed for the intended profession.Procedure The written admission test comprises a number of tests to assess your logical thinking faculties and your basic scientific knowledge. (Duration of the written test: approx. 60 minutes) All applicants will then be invited to an admission interview for feedback on the results of their written test. You will also be queried about your personal circumstances, including your motivation for your choice of degree program. (Duration: approx. 15 minutes per candidate) Should you fail to meet the entry level requirements for the degree program, you will after admission be advised on how to best prepare yourself for the specific subject.Criteria The criteria for acceptance are based solely on performance. Points are awarded for the written test results and the admission interview. The applicants will be ranked correspondingly. The geographical origin of the applicant has no influence on the admission decision. The admission requirements must be met in all cases. The process as a whole and all test and assessment results from the admission procedure are documented in a verifiable manner and archived. Dates The date for the selection process will be communicated to the applicants in a timely manner by the secretary's office via e-mail. Studying with disabilities If you have any questions regarding accessibility or if you have a specific need in the admission procedure due to an impairment, please contact Ursula Weilenmann for organizational reasons as early as possible at barrierefrei@fh-campuswien.ac.at.Since we try to take into account individual needs due to disabilities when conducting the written admission test, we ask you to indicate in your online application to Weilenmann in which form you require support.Your contact person in the department Gender & Diversity ManagementMag.a Ursula Weilenmannbarrierefrei@fh-campuswien.ac.athttp://www.fh-campuswien.ac.at/barrierefrei Getting started Buddy network Experience shows that many questions arise during the application phase and start of the degree program. We therefore propose that interested persons and applicants should network with higher semester students in the same degree program as yours. Personal and individual contact with your buddy will facilitate your entry into the degree program. To the Buddy network Bridging Courses First semester students in technical or structural engineering degree programs have the opportunity of attending special refresher and preparatory courses pertinent to their degree program in subjects such as mathematics, physics, English, electronics, C programming etc. This will facilitate entry into the FH degree program and ensure your success in important degree program subjects. Dates and registration Contact > FH-Prof. Dipl.-Ing. Andreas Posch Head Department Engineering, Head of Degree Program Applied Electronics, Clinical Engineering, Electronic Systems Engineering, Technical Management T: +43 1 606 68 77-2111andreas.posch@fh-campuswien.ac.at Secretary's office Mag.a Andrea WinkelbauerFavoritenstraße 226, B.3.251100 ViennaT:+43 1 606 68 77-2110F: +43 1 606 68 77-2119elektronik@fh-campuswien.ac.atMap main campus Favoriten (Google Maps)Office hours during the summer semester:By telephone appointment Teaching staff and research staff > Dr. Christa Blecha Academic Staff> FH-Prof. DI Gerhard Engelmann Academic Staff> FH-Prof. DI Christian Halter Academic Staff, Head of Works Council> Ing. Gernot Korak, BSc MSc Academic Staff> Christine Naschenweng, BSc MSc Junior Researcher> FH-Prof. DI Rudolf Oberpertinger, MBA Academic Staff> FH-Prof. Dipl.-Ing. Herbert Paulis Academic Staff> FH-Prof. Ing. Dipl.-Ing. Andreas Petz Head of Degree Program Green Mobility, Academic Staff> Eveline Prochaska, BSc MSc Academic Staff, Stadt Wien Endowed Professorship for Healthcare Engineering> DI Gerald Renner Academic Staff> DI Irene Schrutek Academic Staff (Parental Leave)> FH-Prof. Dipl.-Ing. Markus Wellenzohn Academic Staff> Hubert Wimmer, MSc Academic Staff Cooperations and Campusnetzwerk We work closely with renowned companies in commerce and industry, with universities, institutions and schools. This guarantees you contacts for internships, employment or participation in research and development. In the course of exciting school cooperations, students may contribute to firing up pupils on topics such as our Bionics Project with the Festo company. You can find information about our cooperation activities and much more at Campusnetzwerk. It's well worth visiting the site as it may direct you to a new job or interesting event held by our cooperation partners. Campusnetzwerk
1. Semesters LectureSWSECTSBasics of Business English UEBasics of Business English UE1SWS2ECTSLecture contentsThe focus of the training is on the following four language competence areas: 1) Listening (working with audio-visual media), 2) Reading (text comprehension, working with newspaper articles in the field and business), 3) Writing (business correspondence with emphasis on new media, text production, analysis, commentary, etc.), 4) Speaking (students should be able to express themselves adequately, confidently and as accurately as possible in English in a professional environment). Students will learn to express themselves adequately in English in the following content areas: - Presentation techniques - Organisation: Talking about your company and company structure - Cultures and cultural awareness for business travellers - Social English - TelephoningAssessment methodsFinal exam Written exam Peer-presentation Classroom participation Distance LearningTeaching methodsUELanguageEnglish12Programming in C ILVProgramming in C ILV3.5SWS6ECTSLecture contentsWithout group division: Fundamentals of programming, concept of algorithm. Structure and conception of a computer system. Programming using C programming language, instruction set of C, static and dynamic data structures, basics pointers and simple application. In group division: Practical implementation of the taught basics through guided and independent solving of tasks on the computer, simple and more complex data structures, analysis of algorithms, use of library functions. Use of programming interfaces.Assessment methodsContinuous assessment Immanent examination characterTeaching methodsILVLanguageGerman3.56Digital Technology ILVDigital Technology ILV2.5SWS4ECTSLecture contents- Number Representations - Boolean algebra (introduction) - Basic logic circuits and gates - KV diagram - Selected circuits of static logic - Switching circuits (counters, shift registers, state machines, ...)Assessment methodsFinal exam Immanent examination characterTeaching methodsILVLanguageGerman2.54Electronics Laboratory I UEElectronics Laboratory I UE3SWS5ECTSLecture contentsPractical applications of the contents covered in the theory courses "Fundamentals of Electronics" and "Digital Technology". For individual laboratory exercises, tasks are to be solved in the preparation phase, which are then to be practically implemented and metrologically verified during the laboratory exercise. For each laboratory exercise, the evaluated measurement results and findings are to be documented in a protocol.Assessment methodsFinal exam Written exam at the end of the courseTeaching methodsExercices at the laboratoryLanguageGerman35Fundamentals of Electrical Engineering 1 ILVFundamentals of Electrical Engineering 1 ILV4SWS6ECTSLecture contentsSI units, charge, current density, definition of current and voltage, ohmic resistance, ohmic law, electrical power, electrical work, voltage source, current source, real vs. ideal sources, resistor networks, Kirchhoff's rules, network calculations, superposition principle, equivalent sources, controlled sources, power matching. resistors: construction, selection criteria, labelling/colour code, equivalent circuit, temperature dependence, thermal resistance, non-linear resistors Transient processes with capacitors and coils diode: Doping, pn junction, rectifier circuits, Z diode, LEDs, photodiode, capacitance diode. transistor: bipolar transistor, FET, structure, function, characteristics, transistor as switch, thyristorAssessment methodsContinuous assessment Immanent examination characterTeaching methodsILVLanguageGerman46Learning strategies and working methods 1 ILVLearning strategies and working methods 1 ILV1SWS3ECTSLecture contentsThe students reflect on the essential contents of the first semester and learn about different learning methods. They can try out these different learning methods and thus see which type and form of learning is best suited for each individual student.Assessment methodsFinal exam The work of the individual students is reflected upon in a discussion.Teaching methodsIntegrated courseLanguageGerman13Mathematics I ILVMathematics I ILV3SWS4ECTSLecture contentsNatural numbers, real numbers, complex numbers Concept of functions, elementary functions: Polynomial functions, rational functions, exponential, logarithmic and trigonometric functions. Differential and integral calculus in one variable Taylor expansion Partial fraction decomposition Differentiation and integration in practiceAssessment methodsContinuous assessment Immanent examination characterTeaching methodsILVLanguageGerman34
2. Semesters LectureSWSECTSDigital Systems ILVDigital Systems ILV2SWS4ECTSLecture contents- Logic families - Circuit technology of digital circuits - Memory technologies - Interface circuits - Analog-digital conversion, digital-analog conversion - Basics of network technology - OSI reference model - Data transmission (codecs, standards and test methods)Assessment methodsContinuous assessment Immanent examinationTeaching methodsILVLanguageGerman24Electronics Laboratory 2 UEElectronics Laboratory 2 UE3SWS4ECTSLecture contentsPractical applications of the contents covered in the theory courses "Components of Electronics" and "Digital Systems". For individual laboratory exercises, tasks are to be solved in the preparation phase, which are then to be practically implemented and metrologically verified during the laboratory exercise. For each laboratory exercise, the evaluated measurement results and findings are to be documented in a protocol.Assessment methodsFinal exam Written exam at the end of the course.Teaching methodsExercices at the laboratoryLanguageGerman34Advanced C-Programming VOAdvanced C-Programming VO1SWS1ECTSLecture contentsKnowledge of advanced C programming, static and dynamic data structures, sorting techniques, mastery of pointer concepts and pointer arithmetic, pointers to functions and pointers to higher data structures, bit operators. Discussion of common errors in SW development and how to avoid them.Assessment methodsFinal exam LV final final examinationTeaching methodsLectureLanguageGerman11Advanced C-Programming UEAdvanced C-Programming UE1.5SWS3ECTSLecture contentsPractical implementation of the taught basics through guided and independent solving of tasks in the area of pointer concepts and pointer arithmetic, pointers to functions and pointers to higher data structures as well as bit operations. Practical application of methods and principles of SW tests and source documentation.Assessment methodsContinuous assessment Immanent examination characterTeaching methodsUELanguageGerman1.53Fundamentals of Electrical Engineering 2 ILVFundamentals of Electrical Engineering 2 ILV4SWS6ECTSLecture contentsDefinition and quantification of alternating variables, arithmetic mean, rectifier, rms, capacitor, inductor, impedance, network calculations, transfer function, low pass, high pass. Capacitor and Coil: Construction, selection criteria, equivalent circuit Transistor: transistor amplifier, emitter circuit, collector circuit, B-amplifier OPV: ideal OPV, inverting amplifier, non-inverting amplifier, summer, impedance converter, comparator, integrator, differentiator, characteristics of real OPVs definition of magnetic field, characteristics of magnetic field, matter in magnetic field, induction, coupled inductances, transformerAssessment methodsContinuous assessment Immanent examination characterTeaching methodsILVLanguageGerman46Intermediate Business English UEIntermediate Business English UE1SWS2ECTSLecture contentsStudents learn to express themselves adequately in English in the following content areas: - Recruitment, - job applications - CV and cover letter - Job interviews and salary negotiations Students will become familiar with recruitment methods and with the specifics of job applications and CVs in English-speaking countries. The students write application documents and actively go through the various application steps.Assessment methodsFinal exam Class participation Distance learning Final examTeaching methodsUELanguageEnglish12Learning strategies and working methods 2 ILVLearning strategies and working methods 2 ILV0.5SWS2ECTSLecture contentsThe students reflect on the essential contents of the first semester and learn about different learning methods. They can try out these different learning methods and thus see which type and form of learning is best suited for each individual student.Assessment methodsFinal exam The work of the individual students is reflected upon in a discussion.Teaching methodsIntegrated courseLanguageGerman0.52Mathematics II ILVMathematics II ILV2.5SWS4ECTSLecture contentsCalculating with vectors, matrices Introduction to a computer algebra system (e.g. MATLAB) Linear systems of equations with application to practical problems Functions in two and more variables, partial derivatives and gradients as well as the arithmetic operations divergence and rotation (in Cartesian coordinates as well as in cylindrical and spherical coordinates) Coordinate transformation (Cartesian coordinates, polar coordinates, cylinders and spherical coordinates) Basics of curve and range integrals Integration in 2 and 3 dimensions, integral theorem of Gauss and Stokes Determination of extreme values with and without constraintsAssessment methodsContinuous assessment Immanent examination characterTeaching methodsILVLanguageGerman2.54Physics and Sensor Technology I ILVPhysics and Sensor Technology I ILV2.5SWS4ECTSLecture contentsBasics of mechanics: Velocity and acceleration, forces, energy, work, power, conservation laws, friction, dynamics of rigid bodies; sound as well as hydrodynamics as well as the necessary mathematical principles; Basics of sensors as well as structure and functional principles of corresponding sensors (pressure, force, acceleration, displacement and angle sensors, etc...) Ultrasonic sensors, flow sensors, etc... with calculation exercises; Basics of thermodynamics: Basic quantities of thermodynamics, main theorems of thermodynamics, heat transport and heat transfer; Corresponding sensors (structure and mode of operation) for temperature measurement, humidity sensors, etc... are treated with calculation exercises;Assessment methodsContinuous assessment Immanent examination characterTeaching methodsILVLanguageGerman2.54
3. Semesters LectureSWSECTSMathematical Methods of Electrical Engineering ILVMathematical Methods of Electrical Engineering ILV2.5SWS6ECTSLecture contentsSignal and System Theory Fourier Series/Fourier Transform Laplace transform General theory of differential equations Solution methods for (ordinary) linear differential equations Numerics Applications in science and technologyAssessment methodsContinuous assessment Immanent examination characterTeaching methodsILVLanguageGerman2.56Physics and Sensor Technology II ILVPhysics and Sensor Technology II ILV2SWS5ECTSLecture contentsBasics of electrostatics and magnetostatics as well as electrodynamics and the mathematical fundamentals; Contents are among others: electric and magnetic fields, Maxwell's equations, electrodynamic potentials, electric and magnetic flux, circulation, electric and magnetic voltage, electric and magnetic forces, flow law, Lorentz force, law of induction, electromagnetic waves in vacuum and in matter, radiation and propagation of electromagnetic waves (Hertzian dipole, multipole radiation, characteristic impedance, antennas....), electric currents, continuity equation, vector potential, Biot-Sarvat law etc...; Sensor technology: structure and function of inductive sensors, magnetic field sensors, capacitive sensors, measurement of electric and magnetic fields as well as corresponding computational exercises on the topics.Assessment methodsContinuous assessment Immanent examination characterTeaching methodsILVLanguageGerman25Programming of Microprocessors UEProgramming of Microprocessors UE2SWS3ECTSLecture contentsSolve exercises with given Hardware (STM32 - ARM Cortex M4) by programming the controller in C. Fundamentals of microcontrollers, components of an actual microcontroller (timer, NVIC, ADC, UART,..) and LCD display.Assessment methodsContinuous assessment Immanent examination characterTeaching methodsHands on examplesLanguageGerman23Programming of Microprocessors VOProgramming of Microprocessors VO1.5SWS2ECTSLecture contentsIntroduction to the architecture of microcontrollers (µC). Modern 8- and 32-bit µC systems are introduced (Arduino and STM32) as well as common peripherals available on these µC (NVIC, DMA, GPIO, Timer, ADC, ...) and their functionalities. Special features and peculiarities of programming µC are discussed.Assessment methodsFinal exam Written exam at the end of the course.Teaching methodsLecture combined with distance learningLanguageGerman1.52Control Engineering ILVControl Engineering ILV2.5SWS5ECTSLecture contentsIntroduction and basic terms Classification of controlled systems System identification Control loop structures Stability criteria Controller design (computer aided) Discontinuous controllersAssessment methodsContinuous assessment Immanent examination character with final written exam.Teaching methods- Lecture notes - Presentation with beamer - Solving problems using MATLAB - Discussion - Step-by-step explanation of complex contents on the whiteboardLanguageGerman2.55Applied Electronic Circuit Design ILVApplied Electronic Circuit Design ILV3SWS5ECTSLecture contentsLinear voltage regulator DC-DC Converter Signal theoretical consideration of amplifiers Power amplifier (push-pull output stage) Circuits with operational amplifiers (e.g. active filters, current sources/current sinks, active rectifiers, limiter circuits, linearization circuits, function generators, interface circuits) Non-ideal properties of operational amplifiers and circuit-technical measures Stability of operational amplifiersAssessment methodsFinal exam Final examTeaching methodsLecture with Laptop, Beamer and explanations on whiteboardLanguageGerman35Electrical Metrology ILVElectrical Metrology ILV2.5SWS4ECTSLecture contentsMeasurement of direct and alternating currents/voltages Measurement of resistances and impedances Bridge circuits Two-/four-wire measurement Measurement uncertainty, measurement error, error propagation Measuring amplifier Time and frequency measurement Analogue-Digital-Converter, Digital-Analogue-Converter Oscilloscope Measurement of signal spectra Automated measurement systems Practical applications of the contents dealt with in the theory part, are set up and measured in laboratory exercises Documentation and interpretation of measurement results in laboratory protocols.Assessment methodsContinuous assessment Immanent examination characterTeaching methodsILVLanguageGerman2.54
4. Semesters LectureSWSECTSActuators VOActuators VO1SWS2ECTSLecture contentsBasics as well as classification and structure of actuators Functional and conversion principles of actuators Basics of power transmission and mechanical energy transmission with gears incl. spindle drives, efficiency, losses, self-locking ... General possibilities of energy and power transmission with actuators Linear actuators and rotary actuators Hydro-actuators (valves and motors) Thermoelectric actuators (Peltier element) Calculation principles of magnetic circuits for electrical machines and actuators (magnetic actuators, magnetic valves) as well as electromagnetic actuators Piezo actuators and piezo motors (piezoelectric injection valves, ultrasonic transducers, inchworm motors, Legs motors) Stepper motors (reluctance stepper motors, permanent magnet stepper motors, hybrid stepper motors) DC machine and basics of electric rotating field machines Micro-actuators as well as novel and unconventional actuators and their functional principles and structureAssessment methodsFinal examTeaching methodsVOLanguageGerman12Applied Microcontroller Programming UEApplied Microcontroller Programming UE1SWS4ECTSLecture contentsApplied µC programming: read and interpret sensor data, implementaion and application of two-wire bus systems (I²C, SPI). Special tricks and techniques of µC programming are introduced and discussed.Assessment methodsContinuous assessment permanent assessmentTeaching methodspractical exerciseLanguageGerman14Automation of Technical Processes I ILVAutomation of Technical Processes I ILV1.5SWS2ECTSLecture contentsBasic terms, device and programming structure of a process automation system, procedure for creating software systems with real-time requirements, introduction to the handling of automation projects. Concept of a programmable logic controller, introduction to the creation of PLC programs, measures for efficient programming and shortening the engineering phase, diagnosing hardware faults (replacing modules), targeted troubleshooting, adapting machine/system to new conditions, rapid localization of faults (emergency operation), efficient programming, outlook on operating and monitoring, basis of decentralized peripherals, exercises: PLC programmingAssessment methodsContinuous assessment immanent assessmentTeaching methodsimmanent assessmentLanguageGerman1.52Design of Electronic Devices 1 ILVDesign of Electronic Devices 1 ILV2SWS5ECTSLecture contentsIntroduction to the design process of electronic circuits / assemblies / products. Getting to know the procedure for creating / fixing and maintaining functional or device requirements. Types and context of documentation of development results. Typical divisions and functions of individual departments in a research and development company. Peripheral departments and their influence on development (e.g. service, life cycle support, etc.).Assessment methodsContinuous assessment Immanent examination characterTeaching methodsILVLanguageGerman25Power Electronics ILVPower Electronics ILV2SWS3ECTSLecture contentsPower supplies, DC-DC converters, transistor bridges, motor control bridge, inverters, class-D amplifiers. Transistors and their switching behaviour, capacitors and inductors for power electronics Electromagnetic compatibility, layout and filtering Losses, thermal design and coolingAssessment methodsFinal exam LV final final final final final final final final final final final final final final final final final final final final final final final final final final final final finalTeaching methodsILVLanguageGerman23Photonics and Optoelectronics VOPhotonics and Optoelectronics VO2SWS4ECTSLecture contentsLight as an electromagnetic wave as well as light as a particle (photon), interference, coherence, diffraction as well as dispersion of light, physical basics of optics, radiation evaluation especially the basics of photometry as well as radiation laws, interaction of light and matter, light generation in conventional light sources (incandescent lamps, gas discharge lamps, ...), light generation in semiconductors as well as semiconductor devices e.g.. LED, ..., light generation in lasers, optical radiation and effects of nonlinear optics, photo detection and optical components (components of optics and optoelectronics) as well as physical basics of optical sensors, overview of optical sensors (fiber optic sensors, ...) and their most important applications as well as corresponding calculation exercises (calculation examples) for the corresponding topics; Transmission of electromagnetic waves in optical fibers (generation, attenuation and detection)Assessment methodsFinal exam LV final final inspectionTeaching methodsVOLanguageGerman24Circuit and System Design UECircuit and System Design UE2.5SWS4ECTSLecture contents- Introduction and basic concepts of computer-aided tools (EDA, CAD, CAE); - Computer simulation of electronic circuits with different complexity - Development of new simulation models for special components based on their specification - Computer aided circuit board design by means of a logic circuit, simulation and circuit board design software - Computer-aided system designAssessment methodsContinuous assessment Immanent examination characterTeaching methodsExcerciseLanguageGerman2.54Circuit Design Laboratory UECircuit Design Laboratory UE2SWS4ECTSLecture contentsPractical applications of selected contents of the theory course "Applied Circuit Technology". Documentation and interpretation of measurement results in laboratory protocols.Assessment methodsFinal exam LV final final examinationTeaching methodsExcercices at the laboratoryLanguageGerman24Technical English 1 UETechnical English 1 UE1SWS1ECTSLecture contentsStudents learn how to present professional articles from different areas of Electronics in English. Thereby students learn the relevant professional vocabulary and get to know specific technical content.Assessment methodsFinal exam presentations class participation final examTeaching methodsUELanguageEnglish11Scientific Research for Graduation Candidates VOScientific Research for Graduation Candidates VO1SWS1ECTSLecture contents- What is science - Scientific work - Scientific writing - Peer review - Code of ethics - Scientific presentationsAssessment methodsFinal exam * Theory presentationTeaching methods- student presentations (distance learning) - discussion and additions by the lecturerLanguageGerman11
5. Semesters LectureSWSECTSPropulsion systems VOPropulsion systems VO1.5SWS2ECTSLecture contentsBasics of electrical machines: DC machine, asynchronous machine, synchronous machine, reluctance motor, stepper motor. Design, function, operating behaviour, characteristic curves. Design and function of power converters, frequency converters and drives with EC motors.Assessment methodsFinal exam LV final final examinationTeaching methodsVOLanguageGerman1.52Selected Chapters of Electronics I SESelected Chapters of Electronics I SE2SWS3ECTSLecture contentsIn-depth treatment of current, selected topics in applied electronics. In the context of this course, topics of guest lecturers or current research topics of the FH Campus Wien can also be treated. This course offers students the opportunity to participate in internationalisation activities. This course is a further development of the I@H project implemented in 2014.Assessment methodsContinuous assessment intrinsic audit characterTeaching methodsSELanguageGerman23Electrical energy storage VOElectrical energy storage VO1SWS2ECTSLecture contentsFundamentals and structure of electrical and electrochemical energy storage systems. Electrolytic double layer capacitors (EDLC), different secondary cells (lead-acid, lithium-ion, LiFePO4, nickel-metal hydride). Operating characteristics, charging and discharging procedures. Safety aspects, balancing, battery management systems.Assessment methodsFinal exam LV final final examinationTeaching methodsCOLanguageGerman12Design of Electronic Devices I UEDesign of Electronic Devices I UE1.5SWS6ECTSLecture contents- Design of an electronic device based on the previously acquired procedures, including simulation of the essential functions using suitable simulation software. - The development of the device concept takes place in small groups, with own division of tasks under the guidance of the lecturer. - Consideration of the requirements regarding interference immunity (electromagnetic compatibility (EMC) and electrostatic charging and discharging (ESD)) in the device design. Interaction of the different competences, skills and tasks in a development team or in individual work on the basis of a concrete task.Assessment methodsContinuous assessment intrinsic audit characterTeaching methodsUELanguageGerman1.56Project Management ILVProject Management ILV1SWS2ECTSLecture contentsIntroduction to the concept of project and the project management approach. Instruments and tools of project management such as delimitation and context analysis, project order, performance, schedule, cost/resource planning, project organisation and related communication structures. Getting to know the essential processes (assignment, start, controlling, closing, marketing) in project management as well as methods of design. Introduction to the basic concepts and fundamentals of organisations, in-depth knowledge of structural and process organisation, organisational culture, forms of work organisation (e.g. MbO, job rotation) group/teams as well as strategic management.Assessment methodsContinuous assessment Immanent examination characterTeaching methodsILVLanguageGerman12Technical English 2 UETechnical English 2 UE1SWS2ECTSLecture contentsStudents learn how to present professional articles from different areas of Electronics in English. Thereby students learn the relevant professional vocabulary and get to know specific technical content.Assessment methodsFinal exam presentations class participation final examTeaching methodspresentations, discussions, q+aLanguageEnglish12Economy ILVEconomy ILV2SWS3ECTSLecture contentsDivisions of economics, general business administration; business administration techniques e.g. cost accounting; special business administration e.g. trade; functional business administration e.g. financing; definition and division of accounting (bookkeeping, accounting, cost accounting); areas of marketing, personnel, procurement - storage - production, investment and financing, management and organisation. Derivation of costs from accounting (cost-type accounting), allocation of costs to internal service areas (cost-centre accounting), determination of cost-covering prices (cost-unit accounting), determination of the cost-unit profit and the profit for the period. Determination of financing-related data from accounting, delimitation of the areas of financing and investment; internal and external financing; equity and debt financing, alternative forms of financing; basics of financial mathematics.Assessment methodsContinuous assessment Immanent examination characterTeaching methodsILVLanguageGerman23 Specialization AutomatisierungstechnikLectureSWSECTSAutomation of Technical Processes II ILVAutomation of Technical Processes II ILV3SWS5ECTSLecture contentsteaching the operations in an automation project, calculation of hard- and software cost as well as engineering and project management modelling of automation tasks, project management especially for automation-projects, special automation topics: weighing ... kpi and benchmarking, engineering tasks in an automation projects practical exercisesAssessment methodsContinuous assessment LV Immanent Examination CharacterTeaching methodsILVLanguageGerman35Programmable Logic Control Systems and Control Systems ILVProgrammable Logic Control Systems and Control Systems ILV3SWS5ECTSLecture contentsDesign and implementation of distributed automation systems (component technology, OPC UA), operation and monitoring (local and via Internet), soft PLC, real-time behaviour, safety controllers, Exercises: PLC programming, maintenance diagnostics - In-depth PLC hardware and software. - Intelligent modules (counters, axis cards, ...) - Principle communication possibilities on process and field level - Presentation of the five IEC 61131 languages plus exercises for LD, FBD, ST and SFC - Design and dimensioning of central and distributed control systems in theory and practice. - Discussion of concrete hardware (Phoenix Contact) - Dimensioning calculation of a concrete project in the context of exercisesAssessment methodsContinuous assessment intrinsic audit characterTeaching methodsILVLanguageGerman35 Specialization UmwelttechnikLectureSWSECTSEnergy efficiency and climate protection strategies ILVEnergy efficiency and climate protection strategies ILV1.5SWS2ECTSLecture contentsEnergy efficiency terms, 20-20-20 targets of the European Union, energy efficiency labelling of products, greenhouse gases and their impact on the global climate. World climate reports, CO2 balance of the energy supply chain, CO2 certificate trading, ecological footprint, energy management systems according to ISO50001, identification of energy saving potentials, rebound effect, smart technologies in the field of energy efficiency, economic aspects of energy efficiency and climate protection strategies, political instruments in the field of energy efficiency and climate protection strategiesAssessment methodsFinal exam LV finalTeaching methodsILVLanguageGerman1.52Fundamentals of Renewable Energy Sources ILVFundamentals of Renewable Energy Sources ILV2SWS3ECTSLecture contentsEnergy section: Energy concept, different units in the energy economy, differentiation between exergy and anergy, systematisation of renewable energies, Carnot efficiency, energy balance in Austria Wind energy section: Power potential of moving air masses, measurement of wind speed, high-altitude wind profile, frequency distribution of wind speed, usable wind power (impulse theory according to Betz) Solar radiation section: Quantification of solar radiation, Earth's energy balance, Atmosphere as an optical filter, Radiation components (direct radiation, diffuse radiation), Sun position diagram, Radiation components on inclined surfaces, Tracking of receiving surfaces, PVGIS, Measurement of solar radiation.Assessment methodsFinal exam LV finalTeaching methodsILVLanguageGerman23Eco Design VOEco Design VO1SWS2ECTSLecture contentsGeneral introduction to the term eco-design, necessity of eco-design in sustainable product design with focus on electronic/electrotechnical products, characteristics of ecological product and process improvements, strategies to support systematic ecological product improvement (eco-design process), design for disassembly of electronic and electrotechnical products, disassembly processes, design for non-disassembly, recycling rate, introduction to the most important design guidelines for the selection of materials and surface treatments for electronic and electrotechnical products, environmentally friendly design of packaging. Best practice example of eco-design for electronic and electrotechnical products.Assessment methodsFinal exam LV finalTeaching methodsLV final final final final final final final final final final final final final final final final final final final final final final final final final final final final finalLanguageGerman12Environmental Protection in Production ILVEnvironmental Protection in Production ILV1.5SWS3ECTSLecture contentsThe austrian way of environmental protection for producing companies in the electronic industryAssessment methodsFinal exam LV finalTeaching methodsILVLanguageGerman1.53
6. Semesters LectureSWSECTSSelected Chapters of Electronics II SESelected Chapters of Electronics II SE2SWS3ECTSLecture contentsIn-depth treatment of current, selected topics in applied electronics. Within the framework of this course, topics from guest lecturers or current research topics of the FH Campus Wien can also be dealt with.Assessment methodsContinuous assessment Immanent examination characterTeaching methodsSELanguageGerman-English23Bachelor Thesis SEBachelor Thesis SE1SWS8ECTSLecture contentsWriting a scientific paper in an area of electronics.Assessment methodsContinuous assessment Immanent examination characterTeaching methodsSeminarLanguageGerman18Professional Practical Training PRProfessional Practical Training PR0.5SWS10ECTSLecture contentsThe students carry out a relevant practical work in a company in the field of electronics/automation technology or environmental technology. The concrete procedure for carrying out the internship is agreed with the respective company in which the internship is carried out. The technical orientation of the work must be related to the contents of the degree programme.Assessment methodsContinuous assessment Immanent examination characterTeaching methodsPRLanguageGerman0.510Electro-Mobility VOElectro-Mobility VO1SWS2ECTSLecture contentsStorage technologies, storage management, energy use in driving, energy use for comfort functions, electric drives in e-vehicles, hybrid concepts, assistance systems in vehicles, charging technologies, mobility concepts, ecological aspects of electromobility, funding landscape for electromobility in Austria and internationally, interaction between people and mobility, current market overview in the field of electromobilityAssessment methodsFinal exam LV finalTeaching methodsVOLanguageGerman12Civil and Patent Law VOCivil and Patent Law VO1SWS1ECTSLecture contentsBasic structure of Austrian private law. The focus is on the contract as a central creative instrument, prerequisites for a valid conclusion of a contract, different types of contracts, special features of consumer protection law and their economic significance. Another focus is on tort law and product liability law. This includes the problem area of the relationship between producer and trader liability. Basic features of patent, trademark and design protection law as well as copyright law. The second subject area is the legal protection of intellectual property.Assessment methodsFinal exam Final ExaminationTeaching methodsLecture courseLanguageGerman-English11Product Life Cycle Management VOProduct Life Cycle Management VO1SWS2ECTSLecture contents- Introduction to the different lifecycle phases of an electronic component / assembly and a complete device. - Requirements of the production to the electronic assembly as well as its test and analysis structure. Consideration of these boundary conditions for a cost and resource efficient design of electronic assemblies and systems. - Influence of service & diagnostic requirements on the design of electronic assemblies and systems. - Modern test and analysis systems for electronic circuits and assemblies. - Recycling of electronic assemblies and devices (legal framework and design guidelines). - Banned Substances in the field of electronics - alternative products as well as application.Assessment methodsContinuous assessment Immanent examination character, participation, attendance - 20% of the overall grade Term paper - 30% of the overall grade Written exam - 50% of the overall gradeTeaching methodsLecture, term paper, exhibits, videos, elaboration of scientific terms.LanguageGerman-English12 Specialization AutomatisierungstechnikLectureSWSECTSHuman Machine Interfaces ILVHuman Machine Interfaces ILV1.5SWS2ECTSLecture contentsOperation of control systems - Control panel (text, semi-graphic, full-graphic, touch displays) Signalling options in control systems - conventional types of signalling (from light columns to LEDs) complex control systems, design guidelines for the creation of user interfacesAssessment methodsContinuous assessment LV-immanent examination characterTeaching methodsILVLanguageGerman1.52Process Control Systems and Field Bus Technology ILVProcess Control Systems and Field Bus Technology ILV1.5SWS2ECTSLecture contentsRequirements for the various levels of communication systems in automation technology, common representatives of industrial communication systems, fieldbuses, process automation and process control systems, planning the use of modern computer-aided design tools. Project planning, testing functions with variables, alarm logging, curve display, measured value archiving, data archiving. SCADA (Supervisory Control and Data Acquisition) basic design and training of a SCADA system based on the ATVISE platform incl. exercises, industrial data management such as reporting (drill-down reports), data processing, OPC server.Assessment methodsContinuous assessment LV Immanent examination characterTeaching methodsILVLanguageGerman1.52 Specialization UmwelttechnikLectureSWSECTSTechnologies for the Utilization of Renewable Energy Sources ILVTechnologies for the Utilization of Renewable Energy Sources ILV1.5SWS2ECTSLecture contentsSub-area of photovoltaic system technology: Function of solar cell, characteristics of solar cells, function, structure and properties of PV modules, PV generator, basic function of PV inverter, efficiency of PV inverter, PV inverter as grid manager, PV inverter concepts, planning principles and designs of grid-connected PV systems, coordination of PV generator with PV inverter, lightning protection of PV systems, current product and market overview of PV components. Sub-area wind power plant technology: Wind turbine concepts, aerodynamics of rotor, drag rotor, lift rotor, lightning protection of wind turbines, structure of rotor of wind turbines, power curve of wind turbines, power control of wind turbines, yield determination of wind turbines, tower designs of wind turbines, foundation variants, drive train, gearbox, generator concepts, grid integration of wind turbines, current market overview of wind turbines. Sub-areas to be worked out by the students: Seminar topics: Solar collectors, solar thermal systems, heat pumps, hydrogen, large-scale energy storage, large-scale and small-scale hydropower, biogas, biofuels.Assessment methodsContinuous assessment Immanent examination characterTeaching methodsILVLanguageGerman1.52Environmental Metrology ILVEnvironmental Metrology ILV1.5SWS2ECTSLecture contentsMeasurements of relevant environmental variables, physical measurement principles or measurement methods, market relevant measurement devices for the different measurement methods, accuracy of measurement methods, processing of measurement data, integration of sensors and measurement devices into existing networks. relevant environmental variables: Air quality and quality, CO2 and CO measurement, oxygen measurement, exhaust gas analysis, gas monitoring, gas analysis, dust measurements, aerosol measurement. humidity measurement, pH measurement, water analysis, pressure and differential pressure measurement, measurement of radioactive substances, sound level measurement, volume flow measurement, light measurement, temperature measurementAssessment methodsFinal exam LV finalTeaching methodsILVLanguageGerman1.52
Admission requirements General higher education entrance qualification: University entrance qualification or degree from a general or vocational secondary schoolUniversity entrance exam (Berufsreifeprüfung)Equivalent certificate from abroad Equivalence is determined by international agreements, validation or in individual cases a decision by the head of the academic sectionUniversity entrance qualification exam for Electrical Engineering or Information Technology Information and institutes offering courses in preparation for the university entrance exam (Studienberechtigungsprüfung) can be found on the portal Erwachsenenbildung.at of the Federal Ministry of Education, Science and ResearchErwachsenenbildung.atAustrian Federal Ministry of Education, Science and ResearchRelevant professional qualification and the required auxiliary exams You obtained your professional qualification in the field of apprenticeship groups for electrical disciplines, in secondary vocational schools or as a part-time graduate of the first phase of an HTL (Federal College of Engineering)Regulation for the admission of third country citizens (PDF 224 KB)Information for applicants with non-Austrian (school) certificates (PDF 145 KB)
Application To apply you will require the following documents:Birth certificateProof of citizenshipSchool leaving certificate / university entrance qualification exam (Studienberechtigungsprüfung) / verification of professional qualificationsAn abridged CV with photographPlease note: It is not possible to save incomplete online applications. You must complete your application in one session. Your application will be valid as soon as you upload all of the required documents and certificates. In the event that some documents (e.g. certificates) are not available at the time you apply, you may submit these later via e-mail, mail or in person by no later than the start of the degree program.
Admission procedure The admission procedure consists of a written test and an interview with the admission committee. Aim The aim is to ensure places are offered to those persons who complete the multi-level admission procedure with the best results. The tests are designed to assess the skills needed for the intended profession.Procedure The written admission test comprises a number of tests to assess your logical thinking faculties and your basic scientific knowledge. (Duration of the written test: approx. 60 minutes) All applicants will then be invited to an admission interview for feedback on the results of their written test. You will also be queried about your personal circumstances, including your motivation for your choice of degree program. (Duration: approx. 15 minutes per candidate) Should you fail to meet the entry level requirements for the degree program, you will after admission be advised on how to best prepare yourself for the specific subject.Criteria The criteria for acceptance are based solely on performance. Points are awarded for the written test results and the admission interview. The applicants will be ranked correspondingly. The geographical origin of the applicant has no influence on the admission decision. The admission requirements must be met in all cases. The process as a whole and all test and assessment results from the admission procedure are documented in a verifiable manner and archived.
Dates The date for the selection process will be communicated to the applicants in a timely manner by the secretary's office via e-mail.
> FH-Prof. Dipl.-Ing. Andreas Posch Head Department Engineering, Head of Degree Program Applied Electronics, Clinical Engineering, Electronic Systems Engineering, Technical Management T: +43 1 606 68 77-2111andreas.posch@fh-campuswien.ac.at
> Eveline Prochaska, BSc MSc Academic Staff, Stadt Wien Endowed Professorship for Healthcare Engineering