Overview

This natural sciences degree program provides a broad practical training in medical biotechnology. There, molecular biological techniques are used to research causes, diagnosis and treatment of diseases such as cancer. In addition to applications in the medical field, molecular biotechnology is also used in the development of vaccines and active pharmaceutical ingredients. With the help of genetic engineering, cells are manipulated in such a way that they produce therapeutic proteins such as insulin and vaccines. As a graduate, you will be a biotechnological generalist with entrepreneurial skills and as a scientific/technical assistant you will be active in research and development.

Contact us

Contact us!

Elisabeth Hablas
Victoria Buchsbaum, MA
Vienna BioCenter
Helmut-Qualtinger-Gasse 2, OG.A.01
1030 Wien
T: +43 1 606 68 77-3500
F: +43 1 606 68 77-3509
biotechnologie@fh-campuswien.ac.at

Map Vienna BioCenter (Google Maps)

Office hours
Mon to Fri, 8.00 a.m.-12.00 p.m.

Information: Application and Admission
biotechnologie@fh-campuswien.ac.at

Duration of course
6 Semester
Organisational form
full-time
180ECTS
Language of instruction German
60Study places
Final degree
Bachelor of Science in Natural Sciences (BSc)

Application period of academic year 2022/23

1st January to 13th March 2022

tuition fee / semester:

€ 363,361

+ ÖH premium + contribution2

 

1 Tuition fees for students from third countries € 727,- per semester

 

2 for additional study expenses
(currently up to €83,- depending on degree program and year)

What you can offer

Your strengths lie in biology, chemistry and mathematics. You are interested in natural sciences, medicine and their related technologies. This includes bioinformatics. With a strong spirit of innovation you question existing applications. You want to develop them further and discover new technologies. You want to apply your manual skills in the laboratory to help people. You are a structured thinker and like to examine things extremely closely and you have the patience to take the many necessary steps to reach your findings. You are aware that alone you can achieve a lot, and in a team you can achieve everything. The fact that English is the language of life sciences awakens your linguistic ambition.

What we offer you

Located at the Vienna BioCenter, you will be able to study and conduct research in state of the art lecture halls and laboratories. You will have access to the best equipment in Central Europe, including among other things an S2 laboratory (the second highest security level). We share this important life sciences center with numerous research institutions and well-known biotech companies and maintain an active exchange of knowledge. In addition, your education and research benefit from our close partnerships with the University of Vienna and the Medical University of Vienna. We have built a strong international network that provides you with the opportunity to complete an internship or to study at prestigious universities such as King's College or Imperial College in London, which are among the top 10 universities in the world. Numerous R&D projects in the degree program offer you the opportunity to participate in application-oriented research during an internship and to make valuable contacts for your future career. Practical relevance is also guaranteed at our Campus Lecture evenings, which are open to all and feature contributions from prominent experts.

What makes this degree program special

  • Focus on medical biotechnology
  • Research for active ingredients and vaccines as well as stem cell and gene therapies
  • at the renowned life science campus Vienna BioCenter

Through your practice-oriented education, you will learn to develop and apply new recombinant active pharmaceutical agents and vaccines as well as stem-cell and gene therapies for the treatment of diseases such as cancer or Alzheimer's disease. Recombinant proteins are produced biotechnologically by inserting foreign DNA into cells so that they then produce the proteins. Therefore, the degree program focuses on the cell: You will learn the key signaling pathways and processes in detail. Your main interest is the genome.

You will learn how this important part of the cell, which contains all the genetic information of an organism, works in both healthy and diseased systems. In this degree program we guarantee you a private, fully-equipped, state-of-the-art laboratory space and the opportunity to participate in an R&D project of the Department of Molecular Biotechnology or a partner institution as part of an extensive internship in research areas such as allergy research, cell-based test systems and signaling pathways of the cell.


What you will learn in the degree program

The degree program combines comprehensive know-how about natural sciences and technology with quality and process management. You will enjoy an intensive process-oriented education. Your strongly application-oriented education will be rounded out by the fundamentals of economics and law, laboratory courses and seminars.

  • You will deal with general, analytical and organic chemistry, human biology, cell and molecular biology as well as functional genomics. Mathematics and bioinformatics complement your methodical skills.
  • You will acquire management skills in the fields of quality management, good laboratory practice (GLP) and clinical testing.
  • You will acquire the fundamentals of marketing and communication.
  • You will complete extensive laboratory courses in small groups. You will apply the methods of scientific work within the framework of your bachelor’s thesis.

Curriculum

LectureSWSECTS
Analytical Chemistry I LAB

Analytical Chemistry I LAB

Lector: Mag.pharm. Dr. Michaela Böhmdorfer, Mag.pharm.Dr. Alexandra Maria Maier-Salamon, Bettina Pachmann, Mag. Dr. Stefan Poschner

6SWS
6ECTS

Lecture contents

Laboratory regulations, labelling of hazardous substances, occupational safety, proper disposal of chemicals
Measures of concentration (mol, molar concentration, relative concentration)
Basic laboratory techniques, writing laboratory protocols
Qualitative analysis of inorganic ion mixtures and inorganic and simple organic salt compounds, nomenclature of simple salts
Quantitative analysis by volumetry (acid-base titration, redox titration, complexometry)
pH and pH determination methods, preparation of buffer solutions
Semi-quantitative analysis of inorganic anions and cations using colorimetric rapid tests

Assessment methods

Course with inherent examination character.

Teaching methods

elaborating methods

Language

German

66
Molecular Biology & Genetics I VO

Molecular Biology & Genetics I VO

Lector: FH-Prof. Dr. Herbert Wank

2SWS
3ECTS

Lecture contents

Students learn the basics of genetics and molecular biology with the following topics:
• Genetics - Mendel
• Classic genetics - gene mapping
• genetic defects
• Nucleic acids (DNA, RNA) - structure and function
• Genome structure, chromatin and nucleosomes
• chromosomes
• Replication of the DNA
• cell cycle
• Mitosis - meiosis
• Mutations and repair mechanisms
• Homologous recombination
• Sequence-specific recombination
• Transposable elements

Assessment methods

Written exam on the last day of the course or in coordination with students.

Teaching methods

Lecture
Powerpoint presentations
Videos

Language

German

23
General Cell Biology VO

General Cell Biology VO

Lector: Mag.Dr. Sabine Lampert, Dr. Janek von Byern, Ao.Univ.-Prof. Mag.pharm. Dr. Michael Wirth

1.5SWS
2ECTS

Lecture contents

Cells - the basic units of life: commons and differences between the major types. Structure of procaryotic and eucaryotic cells. Characteristics of plant and animal cells, of Bacteria and Archaea. Structure and funktion of subcellular components.

Examplyfication of the variety of eucaryotic and procaryotic cells, refering to sturctural and functional aspects with focus on tissues and organs of seed plants.

Introduction to different techniques of microscopy and their uses: bright field, dark field, phase contrast, polarization, oil immersion; method for measurement with a light microscope; fluorochrome microscopy, electron microscopy and flow-cytometrie.

Preparation methods and staining techniques for microscopy of eucaryotic cells and DNA. Basic Methods for microscopic analysis of procaryotic cells.
Scientific documentation of microscopic analyses.

Assessment methods

Written exam at the end of the LV about the contents presented during the lecture (see downloads). At least 60% of all points have to be achieved to pass the exam.

Teaching methods

lecture,
PowerPoint presentations
lecture notes for download

Language

German

1.52
Mathematics for Biology I ILV

Mathematics for Biology I ILV

Lector: Dipl.Ing. Nikolaus Maly

3SWS
3ECTS

Lecture contents

Elementary models of population dynamics: We study the deterministic behaviour of elementary large-ensemble models.

- Exponential growth and its underlying geometric principle, logistic growth, short discussion of the dynamics of non-linear systems (Cobweb diagram).
- Matrix models: Levkovich and Leslie models, Eigenvectors and Eigenvalues as tool to determine the asympotic behaviour of linear models.

Assessment methods

Short written exams on a regular basis. Written final report. Possibly additional oral exam to clarify questions.

Teaching methods

Integrated Online Course

Language

German

33
Microscopy Lab LAB

Microscopy Lab LAB

Lector: Mag. Aicha Laarouchi, Mag.Dr. Sabine Lampert, Dr. Brigitte Schmidt, Dr. Janek von Byern

1.5SWS
3ECTS

Lecture contents

Eucaryotic cells from protista, Plantae, Animales, Funghi alive and prepared.
Procaryotic cells.
Subcellular structures in light mikroskop.
scanning electron microscopy, transmission electron microscopy.
Preparationmethods for microskopy, staining methods.
Dokumentation of microscopic analysis.

Assessment methods

Course with inherent examination character. Assessment criteria are the continuous personal participation and engagement during the practical courses as well as the quality of lab reports that have to be done.

Teaching methods

Practical exercise and training with additional demonstrations.

Language

German

1.53
General Biology VO

General Biology VO

Lector: FH-Prof. Dr. Thomas Czerny

2SWS
3ECTS

Lecture contents

Darwinian evolution, creationism and intelligent design. Driving forces and mechanisms of evolution, population genetics, phylogeny and formation of species. Physical and chemical basis of life and energy requirements. History of life on our planet and milestones of evolution: origin of life, oxygen, eukaryotes, sexual reproduction and multicellular organisms. Features of pro- and eukrayotic cells and the phylogeny of life. Kingdoms of life: eubacteria, archaea, protists, fungi, plants and animals. Human evolution and the scientific method.

Assessment methods

a written exam at the end of the lectures

Teaching methods

Oral presentations

23
General Chemistry VO

General Chemistry VO

Lector: Ao. Univ. Prof. Mag.pharm. Dr. Martin Kratzel

2SWS
3ECTS

Lecture contents

Atom: fundamental components of atoms, ultimate particles, elements, isotopes
Radioactivity: radioactive decay, radioactive displacement laws, disintegration series
Atom models: Rutherford's model, Bohr's model, orbital model
Periodic system: periods and groups, short and long periods, electronic configuration of elements, generalizations relative to the position in the periodic system
Bond theories (considering the resulting 3D stucture): metallic bonds, ionic bonds, covalent bonds, coordinate covalent bonds
Intermolecular forces, acids and bases
Conservation laws and consequences: stoichiometry, energy and enthalpy, entropy, spontaneity of chemical reactions, redox reactions
States of matter - gases, liquids, solids: rules and laws
Chemical equilibrium, law of mass action.

Assessment methods

Written exam.

Teaching methods

Lecture under support of Microsoft Powerpoint assisted by computer simulations (3D visualisation tools of atoms and molecules)

Language

German

23
Analytical Chemistry I VO

Analytical Chemistry I VO

Lector: Mag. Dr. Stefan Poschner

1SWS
1ECTS

Lecture contents

In several lecture units the theoretical basics of wet-chemical qualitative and quantitative analysis of inorganic and organic samples will be instructed:
The first unit contains analytical basics. Afterwards, the analysis and individual detection of anions, cations and inorganic salts will be discussed with special emphasis on reactions and stoichiometry. Apart from the analysis of inorganic samples, also first fundamentals of wet-chemical analysis of organic samples will be discussed with special emphasis on the detection of functional organic groups. Additionally, also extraction and separation techniques by using selected organic compounds will be explained.

Assessment methods

Written exam

Teaching methods

Lecture

Language

German

11
Business Studies VO

Business Studies VO

Lector: Dipl.-Kfm. Robert Tilenius

1SWS
1ECTS

Lecture contents

- Fundamentals of business administration
-- Definition of basic concepts of business administration
- Strategic management
-- Market environment and competitive situation
-- Corporate objectives
-- Change management
- Marketing management
-- Marketing strategies
-- Operational marketing / Marketing mix
- Human resource management
-- Personal needs and manpower planning
-- Personal development
-- leadership
- Accounting
-- General accounts and balance
-- Management accounting

Assessment methods

- Multiple Choice
- Text tasks
- Rechenaufgaben

Teaching methods

Lectures

Language

German

11
Public Law VO

Public Law VO

Lector: Dr. Alexander Forster, Mag. Dr. Andreas Lehner

2SWS
2ECTS

Lecture contents

The lecture gives an introduction to Austrian Public Law. It deals with the structure of the Austrian state and gives an overview of the most important constitutional bodies and their cooperation.

Assessment methods

Final written test

Teaching methods

Combination of in-person and distance teaching

Language

German

22
Scientific Communication in English ILV

Scientific Communication in English ILV

Lector: Dr.in Mary Grace Wallis

2SWS
2ECTS

Lecture contents

The timetable for this semester will be provided as detailed information sheets and will be discussed during the first lesson.

See also below (Ziele der Lehrveranstaltung).

Assessment methods

Your command of English, both spoken and written, will be continuously assessed during the semester and will be reflected in the final semester mark. Moreover your active participation in the lessons will also contribute to the overall mark.

Teaching methods

Spontaneous and prepared presentations. Brainstormings, Discussions, Debates. ‘Language clinics’. Individual, pair- and group-work. (Peer) Feedback und (Self-)Reflection.

Language

English

22
Social Skills I ILV

Social Skills I ILV

Lector: Monika Frauwallner

1SWS
1ECTS

Lecture contents

Presentation and appearance
• personal presentation and effect
• analysis of the target group and purpose
• structure and dramaturgy of a presentation
• visualization and medium-mix

Assessment methods

Your performance will be continuously assessed during the semester and will be reflected in the final semester mark. Moreover your active participation in the lessons will also contribute to the overall mark.

Teaching methods

Lecture, individual and group work, practical exercises
Self-assessment via exercises
• for self reflection and individual application
• practical exercises with feedback and analysis

Language

German

11

LectureSWSECTS
Chemical Calculation ILV

Chemical Calculation ILV

Lector: Dr. Judith Wackerlig

0.5SWS
0.5ECTS

Lecture contents

This course is complementary to the lecture course Analytical Chemistry 2 (quantitative analysis). The students should have a command of the fundamentals of mathematics (general algebra, applying equations with one or two variables, percentage calculation, statistics), in order to apply them to chemical problems. Important here are mathematical quantities and units as well as the concept of moles. A strong focus is placed on the practical applications. The following areas are covered:
a) concentrations, preparing solutions and Alligation alternate
b) reaction equations: setting up, determining stoichiometric numbers and calculations
c) chemical equilibria: acid and base constants, solubility
d) stoichiometry of titrations and gravimetry: acid-base reactions, redox reactions, complexation reactions, precipitation reactions, gravimetric factor
e) concentration determination by instrumental methods: internal and external calibration
f) evaluation of measurement results: systematic and random errors, measurement accuracy

Assessment methods

written exam

Teaching methods

Part of the integrated course is taught as frontal instruction via PowerPoint. Complementary activities are also integrated: calculations, online quiz, video.

Language

German

0.50.5
Biochemistry I: Foundations & Building Blocks of Life VO

Biochemistry I: Foundations & Building Blocks of Life VO

Lector: FH-Prof.in Univ.Doz.in Dr.in Ines Swoboda

1.5SWS
2ECTS

Lecture contents

The students are taught the physical, chemical and cellular basics of the design and molecular structure of biomacromolecules (proteins, nucleic acids, polysaccharides and lipids). A special focus is on the importance of carbon for the chemistry of living organisms and on the important role of water for the structure and function of biomacromolecules. In Addition, amino acids and proteins, sugars and polysaccharides, as well as fatty acids and lipids are explained in detail. The chemistry of the covalently linked monomers (amino acids, monosaccharides, fatty acids) is always considered first and then the structure of the macromolecules and supramolecular complexes is described. The following points are particularly pointed out: 1) that the unique structure of the macromolecules determines their function, 2) that non-covalent interactions play a decisive role in the structure and function of the macromolecules and 3) that monomers of the polymeric macromolecules have a specific sequence, which provides the information for the order of life.

Assessment methods

Written exam; open questions

Teaching methods

Lectures

Language

German

1.52
Mathematics for Biology II ILV

Mathematics for Biology II ILV

Lector: Dipl.Ing. Nikolaus Maly

2.5SWS
2.5ECTS

Lecture contents

We discuss various basic mathematical models from population dynamics, population genetics and epidemiology, and develop necessary math skills by exploring these models.

(a) Simulation of Leslie models of real Populations based on empirical data,

(b) Population genetics: Hardy--Weinberg equilibrium of large ensemble population and the contrasting genetic drift model of Wright--Fisher.

Assessment methods

Periodic short practice test, an ongoing project and a written exam at the end of the course.

Teaching methods

Learning by doing.

2.52.5
Quantitative Analytical Chemistry VO

Quantitative Analytical Chemistry VO

Lector: Dr. Judith Wackerlig

1SWS
1ECTS
11
Quantitative Analytical Chemistry LAB

Quantitative Analytical Chemistry LAB

Lector: Iva Cobankovic, MSc, Dr Predrag Kalaba, MSc, Michael Kirchhofer, Erich Möllner, Philip John Neill, BSc, Mag. pharm. Stefan Simic, Dr. Judith Wackerlig

3SWS
3ECTS

Lecture contents

Melting point analysis of organic compounds
Detection of the refractive index
Analysis of the elemental composition
Potentiometric titrations
Thin Layer Chromatography
UV/ VIS spectrophotometry
Analysis of structural compounds using chemical reactions
HPLC and Columnchromatography

Assessment methods

The analytical data achieved by the student is the basis of assessment.

Teaching methods

Achieving handling experience by practical use of theoretical knowledge.

Language

German

33
Social Skills II: Self-Coaching & Communication ILV

Social Skills II: Self-Coaching & Communication ILV

Lector: Monika Frauwallner

1SWS
1ECTS

Lecture contents

Self coaching and communication
• self coaching and motivation
• stress and time-management
• perception and interpretation
• communication analysis

Assessment methods

Your performance will be continuously assessed during the semester and will be reflected in the final semester mark. Moreover your active participation in the lessons will also contribute to the overall mark.

Teaching methods

Lecture, individual and group work, practical exercises
Self-assessment via exercises
• for self reflection and individual application
• practical exercises with feedback and analysis

Language

German

11
Statistics for Biology I ILV

Statistics for Biology I ILV

Lector: Dipl.Ing. Nikolaus Maly, Dr. Christian Steineder

2SWS
2ECTS

Lecture contents

Basics in probability theory and statistics with focus on biology.
(1) Descriptive Statistics:
Basics of describing and visualisation of empirical data by means of GNU R.
(2) Probability Theory
Probability Calculation, Bayes’ Theorem.
(3) Modells in Probability Theory
Random variables, basic stochastic processes.
(4) Inductive Statistics
Parameter Estimation, Confidence Intervals, Hypothesis Testing
(5) Reproducible Research
Basics of producing statistical reports.

Assessment methods

Periodic short practice test, an ongoing project and a written exam at the end of the course. Oral examination to clarify specific questions concerning the project are possible.

Teaching methods

Lecture and practical exercises.

Language

German

22
Inorganic Chemistry VO

Inorganic Chemistry VO

Lector: FH-Prof. Dr. Paul Watson

1SWS
2ECTS

Lecture contents

1. Systematic chemical nomenclature.
2. The periodic table of the elements and periodicity.
3. Groups 1-18of the periodic table, relationships within the groups as well as with other groups, chemical properties of the elements, their production and importance, important compounds their production and importance.

Assessment methods

Multiple choice exam - content of hand-outs.

Teaching methods

PowerPoint presentation, Handouts, Videos, cloze texts and individual learning. One distance learning unit.

Language

German

12
Methods of DNA analysis VO

Methods of DNA analysis VO

Lector: FH-Prof. Dr. Herbert Wank

1SWS
2ECTS

Lecture contents

Biotechnology
recombinant DNA - molecular cloning
restriction enzymes, enzymes used for molecular cloning
plamids - vectors - cloning systems
ligation - transformation
expression plasmids - recombinant protein expression
molecular cloning strategies
bacterial strains for cloning or protein expression

Assessment methods

written Exam

Teaching methods

Lecture

Language

German

12
Molecular Biology & Genetics II VO

Molecular Biology & Genetics II VO

Lector: FH-Prof. Dr. Herbert Wank

2SWS
3ECTS

Lecture contents

Expression of the genome
• Mechanism of transcription (DNA -> RNA)
• Splicing of RNA
• Translation (RNA -> protein)
• The genetic code
Regulation of gene expression
• Transcriptional regulation in prokaryotes
• Transcriptional regulation in eukaryotes
• Regulatory RNAs
Gene regulation in development and evolution
Basic methods of molecular biology
• nucleic acids
• proteins
Signal transduction
cell death
model organisms

Assessment methods

Written exam on the last day of the course or in coordination with students.

Teaching methods

Lecture
Powerpoint presentations
Videos

Language

German-English

23
Organic Chemistry VO

Organic Chemistry VO

Lector: Ao.Univ.-Prof. Dr. Helmut Spreitzer

2SWS
3ECTS

Lecture contents

1. Atomic orbitals
2. Types of bonds
3. Mesomeric and inductive effects
4. Types of compounds (carbohydrates, arom. compounds. halogenides, alcohols, phenols, ethers, sulfur comp., aldehydes. ketones, carbonylic acids and derivatives, carbonic acid and derivatives, amines); nomenclature
5. Acids/Bases in organic chemistry
6. Reaction mechanisms

Assessment methods

Written tests

Teaching methods

Power-Point-Präsentation; Explanations on the board

Language

German

23
Civil Law VO

Civil Law VO

Lector: Dr. and European Attorney Katherine Cohen, RA Dr. Christian Knauder, Dr. Barbara Oberhofer, LL.M. (LSE), Univ.-Prof. Dr. Eva Palten

2SWS
2ECTS

Lecture contents

Introduction to austrian private law (basically contract law and tort law on beginners level including case studies), company law, employment law and patent law.

Assessment methods

Written exams
Overall assessment of the VO Private Law:
- Written partial examinations after the end of the respective course in the areas of basic principles of private law, corporate and labor law, and patent law; the examinations consist of answering learning questions and solving short cases according to the pattern of the questions or cases in the questionnaires provided.
- The overall final grade is made up of the partial results.

Teaching methods

Lectures on an interactive basis, including case studies. You are kindly invited to cooperate!

Language

German-English

22
Scientific Communication in English II ILV

Scientific Communication in English II ILV

Lector: Dr.in Mary Grace Wallis

2SWS
2ECTS

Lecture contents

See our Moodle course for detailed information.

Assessment methods

Permanent assessment, 100% attendance required.

Teaching methods

See our Moodle course for detailed information.

Language

English

22
Cell Biology of the Eukaryotes VO

Cell Biology of the Eukaryotes VO

Lector: FH-Prof. Dr. Herbert Wank

2SWS
3ECTS

Lecture contents

Structure and function of cellular organelles (Nucleus, Mitochondria, Endoplasmatic Reticulum, Golgi, ect.) and substructures (cytoskeleton).
Composition, properties and functional relevance of biomembranes.
Ion channel and carrier mediated transport of small molecules through membranes.
Protein transport into organelles as well as in and out of cells (endocytosis/secretion).
The cytoskeleton: composition, regulatory proteins and intracellular transport events.
Contact/communication between cells via junctions; the concept of tissues and the extracellular matrix.
Complex processes that integrate several features: propagation of action potential along nerve cells; muscle contraction, energy conversion in mitochondria

Assessment methods

written exam

Teaching methods

Power point presentation

Language

German

23
Cell Culture VO

Cell Culture VO

Lector: FH- Prof.in Mag.a Dr.in Marianne Raith

1SWS
1ECTS

Lecture contents

1) Basics of cell- und tissue culture (legal basis, safety levels, requirements and equipment, sterile techniques, contaminations and how to avoid them)
2) The cell and its environment (culture vessels and their treatment, culture conditions)
3) Routine methods for basic handling of cultured cells (medium exchange, subculturing, determination of growth parameters, freezing, thawing and shipment of cells)
4) Cell lines versus primary cells (isolation of primary cells, establishment and characterization of cell lines)
5) Cells as factories (hybridomatechnique for the production of monoclonal antibodies, production of recombinant proteins, transfection, mass cell culture, 3D cell cultures)
6) Methods in cell culture
7) Stemcells (Basics)
8) Plant cell cultures (Basics)

Assessment methods

Regular Moodle quizzes (10%)
Final exam on Moodle (90%)

Teaching methods

Lecture (PowerPoint presentation and lecture videos)
Quizzes for self-examination

Language

German

11

LectureSWSECTS
Bioinformatics ILV

Bioinformatics ILV

Lector: FH-Prof.in Mag.a Dr.in Alexandra Graf

3SWS
3ECTS

Lecture contents

In this lecture we talk about what Bioinformatics is and why we need it today. The studients will be introduced to basic programming and can play around with simple practical examples.
We will go through specific topics of Bioinformatics and discuss the available applications. The topics include:
- Why did Bioinformatics develop and what is it.
- Human Genome Project and its consequences
- Biological sequences, sequence comparison and database search.
- Pattern search
- Structure of biological sequences and structure prediction
- High throughput technologies and data analysis

Programming:
- practical examples in R and a short introduction in Python

Assessment methods

Exercises to be handed in using the Moodle Platform, and short mulitple choice tests also on the Moodle platform.

Teaching methods

lecture, powerpoint presentation, discussion and hands on exercises

Language

German-English

33
English in Science & Career I ILV

English in Science & Career I ILV

Lector: FH-Prof. Dr. Herbert Wank, FH-Prof. Dr. Paul Watson

2SWS
2ECTS

Lecture contents

The course will deal with all four areas of language skills: reading/writing/talking/listening.

The emphasis in the 3rd semester will be on spoken English (presentations (spontaneous and prepared)).

Oral presentations will be an important part of the semesters's work.

Grammar revision (where appropriate) will be offerred.

ACTIVE PARTICIPATION IN THE LESSON IS VERY IMPORTANT AND WILL BE GRADED!

Assessment methods

Your command of English, both spoken and written, will be continuously assessed during the semester and will be reflected in the final semester mark. Moreover your active participation in the lessons will also contribute to the overall mark.

Teaching methods

Spontaneous and prepared presentations. Brainstormings, Discussions, Debates. ‘Language clinics’. Individual, pair- and group-work. Self-reflection is a major focus of the course.

Language

English

22
Fundamentals of Microbiology VO

Fundamentals of Microbiology VO

Lector: FH-Prof. Mag. Dr. Beatrix Kuen-Krismer, Dr. Jonas Ramoni

1.5SWS
2ECTS

Language

German

1.52
Quality & Process Management VO

Quality & Process Management VO

Lector: DI Dr. Georg Hruschka, DI Dr. Timo Kretzschmar, DI (FH) Franz Stark

2SWS
2ECTS

Lecture contents

This lecture gives an introduction into quality management. The following aspects will be imparted within this lecture:
- QM basics, terms and definitions
- Development of strategical approaches and models
- Introduction into process management: design and process description of a site including creation of operating procedures
- ISO 9000/9001
- Requirements on QA regarding drug manufacturing: GLP and GMP
- Documentation
- Basics on norming, certification and accreditation

Assessment methods

Moodle test

Teaching methods

Lecture

Language

German

22
Virology VO

Virology VO

Lector: FH-Prof.in Univ.Doz.in Dr.in Ines Swoboda

0.5SWS
1ECTS

Lecture contents

Basics in Virology:
(a) Bacteriophages: morphology, replication, growth and quantification, application in biotechnology - examples
(b) animal viruses: morphology, replication, pathogenesis, examples (retro viruses, influenza virus)

Assessment methods

Written exam

Teaching methods

Lecture

Language

German-English

0.51
Biochemistry II: Structure Formation, Biorecognition & Catalysis VO

Biochemistry II: Structure Formation, Biorecognition & Catalysis VO

Lector: Ass.-Prof. Mag. Dr. Heinrich Kowalski

1.5SWS
2ECTS

Lecture contents

Structure of proteins; four organizational levels of protein structure; classes of proteins and domains; enzymes and their classes, including examples; protein isolation and detection of proteins; in vitro vs. in vivo protein folding (molecular chaperones); thermodynamics of biochemical reactions; enzyme kinetics (Michaelis-Menten, Lineweaver-Burk); mechanisms of inhibitors; allostery and cooperativeness; cofactors (metal ions, prosthetic groups and co-enzymes); catalytic mechanisms; protein biosynthesis and glycolysis.

Assessment methods

Written; Free text questions aimed at knowledge and understanding

Teaching methods

Lectures

Language

German

1.52
Introduction to Molecular Biological Lab Techniques LAB

Introduction to Molecular Biological Lab Techniques LAB

Lector: Kay Holleis, BSc MSc, FH-Prof. Dr. Herbert Wank, FH-Prof. Dr. Paul Watson

1SWS
1ECTS

Lecture contents

In this course the students will get a crash-course in "how to handle an automatic pipet". Then the students perform several restriction digestions in order to map an unknown piece of DNA. At the end of the course, the students determine the concentration of an unknown DNA-Sample spectrophotometrically (including calculation).

Assessment methods

Enthusiasm, Protocol in English

Teaching methods

Independent work in the laboratory
Introductory remarks from the lector/tutor
Independent drawing of a plasmid map
Writing of a protocol

Language

German

11
Genetic Engineering LAB

Genetic Engineering LAB

Lector: Kay Holleis, BSc MSc, Gregor Sommerkamp, BSc., FH-Prof. Dr. Herbert Wank, ao. Univ.-Prof. Dipl.-Biol. Dr Angela Witte

3SWS
3ECTS

Lecture contents

In this course students learn the basics of cloning. The DNA of an ORF of a phage is amplified using PCR and cloned into the pUC18 vector. Following methods are performed: PCR, restriction digestion, DNA ligation, competent E. coli, plasmid transformation, selection, identification of the clones.
Additionally a deletion mutant is analysed by PCR and nucleic acid will be precipitated.
The students also write a scientific protocol in "publication-form."

Assessment methods

the grades include:
- protocol
- lab participation
- written test

Teaching methods

Practical course with theoretical background

Language

German

33
Immunology VO

Immunology VO

Lector: Univ.-Prof. Dr. Thomas Decker

1SWS
2ECTS

Lecture contents

Basic knowledge about the importance and function of the immune system. Distinction between innate and acquired immunity and the interplay of the innate and acquired immune system in an antimicrobial immune response.

Assessment methods

Written exam

Teaching methods

Lectures with visual representation of the essential content. Questions and discussion by students are highly welcome.

Language

German

12
Molecular Biological & Biophysical Methods SE

Molecular Biological & Biophysical Methods SE

Lector: FH-Prof.in Univ.Doz.in Dr.in Ines Swoboda, FH-Prof. Dr. Herbert Wank

1.5SWS
3ECTS

Lecture contents

Topics:
Detection of Nucleic Acids
PCR
Western blot
Growth of Microorganisms
Antibodies and their use in Molecular Biology
Centrifugation
Protein Purification
Southern and Northern blot
Primer and Hybridization
Proteinexpression
Microarray
Flurescence in Molecular Biology
Sequencing
Isolation and Purification of Nucleic Acids from various Organisms
Primer and Hybridisation
Primer design for cloning of a gene

Assessment methods

Preparation, Oral Presentation, Participation in Discussions, written exam at the end of the seminar

Teaching methods

Seminar, topic preparation in small groups (4-5), oral presentation in small groups (9-10), 15 minutes presentation, discussion, preparation of a handout

Language

German

1.53
Social Skills III: Teambuilding & Conflict Resolution ILV

Social Skills III: Teambuilding & Conflict Resolution ILV

Lector: Monika Frauwallner

1SWS
1ECTS

Lecture contents

Team development and conflict strategies
• team
• phases in team development
• roles in the team
• conflict analysis
• phases of conflict escalation
• strategies for handling conflicts

Assessment methods

Your performance will be continuously assessed during the semester and will be reflected in the final semester mark. Moreover your active participation in the lessons will also contribute to the overall mark.

Teaching methods

Lecture, individual and group work, practical exercises
Self-assessment via exercises
• for self reflection and individual application
• practical exercises with feedback and analysis

Language

German

11
Cell Culture Laboratory LAB

Cell Culture Laboratory LAB

Lector: Kay Holleis, BSc MSc, FH- Prof.in Mag.a Dr.in Marianne Raith

3SWS
3ECTS

Lecture contents

Experiment 1: Handling of Cell Lines (Splitting, Cryoconservation, Live-Dead-Ratio)
Experiment 2: Growth Curve (Evaluation of Doubling-Time and the Influence of Changed Culture conditions)
Experiment 3: Cell cycle/Mitosis
Experiment 4: Cytoskeleton/Transfection
Experiment 5: Problem-Based Learning

Assessment methods

Opening exam (Moodle)
Active participation during the whole course (technical performance and participation)
closing discussion (similar to oral exam) and presentation of the problem-based question (in groups)
every student has to write a protocol describing the experimental part of the course (deadline 2 weeks after the end of the laboratory course, see Moodle for further details)

Teaching methods

Preliminary discussion of the theoretical background of the experiments and practical implementation of the experiments. Problem-based learning.

Language

German

33
Physical Chemistry VO

Physical Chemistry VO

Lector: Univ.-Prof. Dr. Annette Rompel

2SWS
3ECTS

Lecture contents

Introduction, thermodynamics, enthalpy entropy, free energy,
spontaneous and non-spontaneous processes, calorimetry, osmometry,
chemical equilibrium, phases, phase diagrams, electrochemistry,

Assessment methods

Written exam; 8 theoretical questions and practical examples; 24 points necessary for grade E
max. points: 40
Please interpret the formula and the result.
All letters used as symbols must be defined in the context of the task.

Teaching methods

Lecture

Language

German-English

23
Statistics for Biology II ILV

Statistics for Biology II ILV

Lector: Dipl.Ing. Nikolaus Maly, Dr. Christian Steineder

2SWS
2ECTS

Lecture contents

Poisson Processes
Fluctuation Test by Luria-Delbrück
Classic Parameter and Distributionstests
Linear Regression
One-Factor-ANOVA

Assessment methods

Short written exams on a regular basis. Written final exam (report). Possibly additional oral exam to clarify questions.

Teaching methods

Integrated Online Course

Language

German

22

LectureSWSECTS
English in Science & Career II ILV

English in Science & Career II ILV

Lector: FH-Prof. Dr. Paul Watson

2SWS
2ECTS

Lecture contents

The course is, among other things, a consolidation of what was taught in the module "Scientific, Social & Communication Skills".
English is taught via “authentic” international documentation: safety data sheets, articles from peer-reviewed life-science journals, Bachelor theses, etc. using well-known blended learning tools such as group puzzles, individual and group presentations, or video material.
Scientific writing is deepened.
Grammar and punctuation are taught if required by the level of students.
The following topics are taught:
1. Scientific writing:
> scientific articles
• vocabulary
• content
• scientific expression
• construction
• style
• summarizing
• referencing
2. Safety in the Laboratory:
> vocabulary
> abbreviations
> GHS (Globally Harmonized System of Classification and Labeling)
3. Career:
> vocabulary
> applications
> accompanying documentation
> CVs
3. Knowledge acquisition and communication:
> reading and presenting the contents of authentic research articles (Nature/Cell etc.)
> summary writing
Continuous self-reflection, self-evaluation and evaluation of colleagues.

Assessment methods

Performance and progress are permanently assessed. The assessment is based on all written and oral work during the semester. Active participation during the lessons is also taken into account.

Teaching methods

Activating Methods: e.g. presentations, discussions …

Language

English

22
Genome Organization ILV

Genome Organization ILV

Lector: FH-Prof. Dr. Thomas Czerny

1SWS
2ECTS

Lecture contents

Fundamental principles of signal processing by cells in single and multicellular organisms.
Organization of genes and gene regulation.
Illustrative discussion of some pathways (e.g. MAP kinase, GPCR, nuclear hormone receptor, NF-kB, Jak/Stat, Wnt, apoptosis and stress pathways).
Effects of pathways on gene regulation, cell cycle, cytoskeleton and metabolism.
Networking with other pathways - signal networks.
Techniques for analyzing signaling pathways.
Biological and medical aspects of signaling pathways.

Assessment methods

Written exam

Teaching methods

Presentation & Activating Methods

Language

German

12
Project Management ILV

Project Management ILV

Lector: Dr. Irmtraud Bernwieser, PMP

2SWS
2ECTS

Lecture contents

Content of this course covers the following topics:

Project management basics: Definition of a project, definition of projektmanagement, differences project versus process, types of projects, pros/cons of projects, types of organizations and phases of projects

Project initialisation: basics of idea development, from the idea to the project proposal (project charter), teambuilding and -development, stakeholder analyses, governance

Project planning: Basics, development of a project plan (workpackages, milestones, dependencies), risk management, time management and management of costs and resources

Project execution and controlling: Basics of project controlling and management (time, risk, quality and financials), project performance indicators

Project closure: Result transfer, final examination, lessons learned, team termination

Assessment methods

Assessment of the team work (open feedback) - 50 % of final grade
Written examination - 50 % of final grad
Both parts need to be positive, minimum - 60 %

Teaching methods

Course is based on a combinaton of lecture and selected case studies.

Four teams are built. During the semester the teams will work together on solutions for defined tasks.

Each team will get industrial case studies, self defined tasks (self defined project) or predefined subtasks to work on and present the results.

Feedback/discussions/evaluation of results of each team will be done in an open process and are an important part of the teaching concept (reflexion as part of the problem)

Results of the exercise examples are documented by the students and presented to the lector for evaluation.

Students feedback for the lector shall give a focus on the course content and the exercise examples.

Prereadings, lecture and trainings material will be made available at the FH server.

Language

German

22
Applied Microbiology VO

Applied Microbiology VO

Lector: Mag.a Dr.in Lisa Kappel

2SWS
2.5ECTS

Lecture contents

Applied microbiology comprises the microbiological laboratory practice, microbiological production processes and the establishment of production services, typically, but not exclusively, on an industrial level.
The lecture deals with the fermentative production of industrial products, such as chemicals, food (additives) and pharmaceuticals. These 'upstream processes' include the planning, set-up and maintenance of the industrial fermentation processes.
This lecture first introduces the basics of microbiological laboratory practice and then focuses primarily on the production of (pharmaceutical) products, but also illuminates the relevant purification (downstream) processes. The students should be familiar with the common industrial technologies for the production of biomass and metabolites, and with their technological, economic and regulatory requirements. Two forms of industrial biotechnology, the production of recombinant proteins and that of metabolites, are compared in the lecture.

Assessment methods

Written final exam

Teaching methods

Lecture

Language

German

22.5
Biochemistry III: Bioenergetics and Metabolism VO

Biochemistry III: Bioenergetics and Metabolism VO

Lector: Ass.-Prof. Mag. Dr. Heinrich Kowalski

1.5SWS
2ECTS

Language

German

1.52
Gene Expression VO

Gene Expression VO

Lector: FH-Prof. Dr. Herbert Wank

1SWS
2ECTS

Lecture contents

In this course, the subject areas of the courses "Molecular Biology and Genetics I and II" from the first year of study are partly repeated, deepened and expanded. The individual needs of the students are addressed, i. H. At the beginning of the course, the subject areas to be dealt with are determined together with the students.

Assessment methods

written exam

Teaching methods

Lecture

Language

German

12
GxP VO

GxP VO

Lector: DI Dr. Georg Hruschka, DI Dr. Timo Kretzschmar, Mag. Dr. Birgit Spitzer-Sonnleitner, DI (FH) Franz Stark

4SWS
5ECTS
45
Instrument-based Analytics VO

Instrument-based Analytics VO

Lector: Ao.Univ.-Prof. Dipl. Ing. Dr. techn. Wolfgang Holzer, Ao. Univ. Prof. Mag.pharm. Dr. Martin Kratzel

2SWS
3ECTS

Lecture contents

A) Basic principles of spectroscopic methods, UV-vis, IR, AAS, AES and fluorescence spectroscopy, mass spectrometry, X-ray structure analysis, NMR spectroscopy (1H, 13C); for each method: instrumentation, applications, scope and limitations.
B) Basic principles of chromatogarphic methods; thin-layer chromatography, column chromatography, HPLC, GC; electrophoretic methods, gel electrophoresis, capillary electrophoresis.

Assessment methods

written examination

Teaching methods

lecture

Language

German

23
Microbiological Lab Techniques LAB

Microbiological Lab Techniques LAB

Lector: Univ.Doz. Dr. Hans-Jürgen Busse, Kay Holleis, BSc MSc, Mag.a Dr.in Lisa Kappel, Sandra Pfeiffer, BSc MSc

2.5SWS
2.5ECTS

Lecture contents

Introduction to microbiological work (sterile work, disinfection), industrial safety regulations
- Isolation, cultivation and identification of microorganisms
- cell counting
- media preparation
- growth kinetics
- microscopy and staining methods
- morphological and physiological characterization (differentiation methods)

Assessment methods

active participation, protocol, test

Teaching methods

acitivating method

Language

German

2.52.5
Protein & Enzyme Biochemistry LAB

Protein & Enzyme Biochemistry LAB

Lector: Dr. Radostina Bachmaier, Kay Holleis, BSc MSc

3SWS
3ECTS

Lecture contents

Enzymekinetics, photmetry, Lambert-Beers law, Michaelis-Menten-Kinetics, direct plot, Lineweaver-Birk plot, influence of inhibitors, IC50.
Methods in protein chemistry for preparative isolation of enzymes and for the first steos in proteome analysis: buffers, methods for cell-disruption, cell-fractionation, reversiblie and irreversible precipitation of proteins, centifugation,dialysis, ion-exchange-chromatography, indirect enzyme essay, protein quantification methods, electrophoresis methods (SDS-PAGE, 2-dimemsional gel electrophoresis), in-gel protein staining methods (coommassie and silver stain)

Assessment methods

30% exam concerning the theoretical background of the course
40% activity of oral and practical participation during the course
30% assessment of the protocol written by the student after the course (deadline a few weeks after the course)

Teaching methods

Problem Based Learning several weeks before the practical course. Groupwork under constant attendance by teacher and tutor, lectures held by teacher, demonstrations by the tutor, presentations by the students. Discussion of experimental results. Script containing theoretical background information and experimental procedure.

Language

German

33
Protein Expression & Purification LAB

Protein Expression & Purification LAB

Lector: Kay Holleis, BSc MSc, Richard Manning, Gregor Sommerkamp, BSc., FH-Prof. Dr. Herbert Wank, ao. Univ.-Prof. Dipl.-Biol. Dr Angela Witte

3SWS
3ECTS

Lecture contents

The function of genes is central in this internship where students perform a continuous experiment in a bacterial system. The students get to know methods of protein analysis. The expression of a recombinant protein is first studied in small scale (expression cloning in E. coli). The time course of protein expression is analyzed with the aid of Western blots. After upscaling the culture volume under the previously worked out conditions, the recombinant protein is purified by affinity chromatography (HIS-Tag purification) and finally analyzed, dialyzed and the amount of protein obtained is determined quantitatively.
Lab Report: in the form of a scientific publication - abstract, introduction, M&M, results, discussion, literature and citations.

Assessment methods

Final grade: lab report, final examination, motivation, cooperation, practical skills (results)

Teaching methods

Alternative Methods

33
Social Skills IV: Moderation & Problem Solving ILV

Social Skills IV: Moderation & Problem Solving ILV

Lector: Monika Frauwallner

1SWS
1ECTS

Lecture contents

Moderation and troubleshooting
• moderation
• moderation methods
• rhetorical strategies
• troubleshooting

Assessment methods

Your performance will be continuously assessed during the semester and will be reflected in the final semester mark. Moreover your active participation in the lessons will also contribute to the overall mark.

Teaching methods

Lecture, individual and group work, practical exercises
Self-assessment via exercises
• for self reflection and individual application
• practical exercises with feedback and analysis

Language

German

11

LectureSWSECTS
Industry Practical PR

Industry Practical PR

Lector: FH-Prof. Dr. Herbert Wank, FH-Prof. Dr. Paul Watson

0SWS
25ECTS

Lecture contents

The internship serves as an introduction for the students to work independently. The tasks begin with the search for a suitable internship and internship supervisor. Students learn under the supervision of a professional the relevant professional practice in a biotechnology company/research institute and/or independent scientific work. During the internship the subject-, methodological and social competencies acquired during the study, will be implemented in the desired field of occupational activity and practically consolidated.
Another important teaching content is to summarize the internship results in form of an internship report and the documentation of scientific results.

Assessment methods

Assessment of practical supervisor

Teaching methods

Practical

Language

German-English

025
Bachelor Thesis I & Scientific Method SE

Bachelor Thesis I & Scientific Method SE

Lector: FH-Prof. Dr. Herbert Wank

0SWS
5ECTS

Lecture contents

bachelor thesis results frominternship

Assessment methods

Grading of the finished bachelor thesis

Teaching methods

completed bachelor thesis

Language

German-English

05

LectureSWSECTS
Human Physiology VO

Human Physiology VO

Lector: Dr.phil. Dr. med.univ. Karl-Heinz Huemer

2SWS
3ECTS

Lecture contents

homoiostatic regulation, membrane potential (compartments, transport mechanisms, resting membrane potential, action potential, nerve conduction)heart (structure, conduction, ECG, heart cycle, coronary circulation)
respiration (lung volumes, breathing cycle, breathing impairments, lung compliance, surfactant, O2 & CO2 transport)muscle function (electromechanic transformation, striate, smooth and myocardic muscle, force-length diagram)circulation (body, lung & fetal circulation), blood pressures, oxygen saturation, oxygen consumption, local regulation of blood flow)
blood (transport and storage of nutrients & metabolites, hemostasis, plasma proteins)
immunology (cellular & humoral systems, AB0-system, complement-system, inflammation)
excretion (nephron structure, glomerular filtration, secretion, resorption, regulation of blood volume & electrolyte composition, renin-angiotensin-aldosterone system)
metabolism/digestion (gastrointestinal tract & functions, digestion and resorption of carbohydrates, proteins & fat, functions of the liver)
sensory systems (general sensory physiology, mechanosensors, proprioceptors, photoreceptors, equilibrium, ear, smell, taste, pain reception)
nervous system (autonomic nervous system, transmitter systems, motor systems, cognitive functions)
endocrinology (important hormone receptors, hypophysis, regulation of glucose level, catecholamines, glucocorticoids, thyroid, sexual functions)

Assessment methods

written exam

Teaching methods

lecture

Language

German

23
Clinical aspects of immunology VO

Clinical aspects of immunology VO

Lector: Assoc. Prof. Priv.-Doz. Dr. Gernot Schabbauer

1SWS
2ECTS

Lecture contents

CLINICAL APPLICATIONS OF IMMUNOLOGY
ACUTE INFLAMMATORY DISEASES
The immune system evolved to protect against pathogenic organisms such as viruses, bacteria and other parasites. Innate and acquired immunity work together.
In this chapter we will focus on the molecular basis and clinical relevance of the misdirected immune system in the context of, for example, infectious diseases.
One of the key activities of the immune system is the distinction between "self" and "foreign".
AUTO IMMUNITY AND IMMUNODEFICIENCY
If endogenous structures are not recognized as "self", a result of the lack of tolerance can be the emergence of autoimmune diseases. In the case of insufficient recognition of "foreign" or the inability of the immune system to react adequately to “foreign”, the organism may inadequately protect against intruders, and serious life-threatening infections can be the result.
This chapter describes the most important and most common autoimmune diseases (clinical presentation, diagnosis, pathogenesis models), as well as major congenital and acquired immunodeficiencies. In conclusion, the clinically relevant coincidence of immunodeficiency and autoimmune phenomena will be briefly discussed.
ALLERGY
Some exogenous structures are classified by the immune system as potentially dangerous. In this case, there is an unregulated immune response which is based on special mechanisms.
In this chapter we talk about the symptoms, clinical presentation and different manifestations of allergies. We also illuminate the molecular background of allergic reactions.

Assessment methods

Single-choice questions
Overview questions

Teaching methods

Lectures with Powerpoint, Flipchart, Whiteboard

Language

German

12
Tissue Engineering VO

Tissue Engineering VO

Lector: Mag. Dr. Daniel Spazierer

2SWS
3ECTS

Lecture contents

Natural regeneration of tissues; use of implants and organ transplants; biocompatible polymers - naturally occuring, synthetic and biodegradable; stem cells - function and use; Generation of scaffolds loaded with drugs, proteins and cells; delivery of drugs, proteins and cells; Tissue engineering of various tissues: skin, cartilage, bone, vascular system, heart muscle and heart valves, nerves and salivary gland; ethic considerations with the use of organ transplants and stem cells; approval of drugs

Assessment methods

Written exam after the lecture. First exam-date according to calendar; Follow-up exam date will be selected in agreement with the students

Teaching methods

Lecture (online - with digital presence required) with powerpoint presentation, Use of various biomaterials and videos as examples during the lecture,

Language

German

23
Applied Genomics VO

Applied Genomics VO

Lector: Dr. Andreas Bergner, Dr Sebastian Carotta, Dr. Michael Gmachl, Gabriela Gremel, PhD, Dr. Jesse Lipp , Barbara Mair, PhD, Dr. Sven Mostböck, DI Dr. Jürgen Ramharter, Dr. Klaus Rumpel, Doz. Mag. Dr. Wolfgang Sommergruber, Peggy Stolt-Bergner, PhD

2SWS
3ECTS

Lecture contents

- From concept to target, in vitro biology: Signaling pathways in oncology, mechanisms of tumorigenesis, target identification and validation, oncogene addiction and resistance, tumor metabolism, clinical trials
- PK/PD, biomarkers, animal models: Types of biomarkers, PK/PD, in vitro models, in vivo models, ex vivo models, TMAs
- Immunology/immune therapy: Immune system, Immune response, innate and adaptive branches of the immune system, immune therapy, vaccination, immune modulation, CAR T cells
- Systems biology, “Omics”: Transcriptomics, proteomics, (functional) genomics, CRISPR/RNAi technologies, depletion / rescue screens
- Bioinformatics: Insights from data, challenges of big data (processing, storage, visualization, communication), emerging methods in computational biology (machine learning / AI, single cell sequencing)
- The KRAS cluster: Signaling pathways, oncogenic signaling and drug discovery, KRAS biology, in vitro to in vivo relation
- SMAC mimetics & STING: Cancer targeting and immune targeting therapies, rational combinations
- Statistics and Ethics: Statistical tests, p-value, analysis of large datasets, experimental design, ethics in drug discovery and development
- Structural Biology: Protein Science, X-ray, Druggability, cryo EM, NMR
- Computational Chemistry: Chemical space, virtual screening, cheminformatics, structure-based design, property prediction, machine learning
- Hit Finding and Optimization: Biochemical and biophysical assays, assay development, HTS and FBS, attrition and risk management in drug discovery
- Medicinal Chemistry: Hit-to-Lead process, compound optimization, structure-based design, ADMET

Assessment methods

Written examination (multiple choice) at the end of the course

Teaching methods

2-hour oral lectures (presentation slides will be electronically available)

Language

German-English

23
Bachelor Exam BAP

Bachelor Exam BAP

Lector: FH-Prof. Dr. Herbert Wank

0SWS
2ECTS

Lecture contents

The Bachelor's examination is the final examination of the Bachelor's programme before an examination senate relevant to the subject. The students present results from their work experience in the form of a lecture. Students are interviewed by the examination senate on their presentation as well as on central theoretical and practical topics of the Bachelor's programme.

Assessment methods

Up to 20 points are awarded for the presentation by the examination senate. Up to 20 points are also awarded for the subsequent survey for presentation purposes. Up to 30 points are awarded for answering questions on central theoretical and practical topics of the bachelor's programme. The sum of these points results in the overall grade for the Bachelor examination.

Teaching methods

Activating methods: presentation and oral examination

Language

German-English

02
Reflection of Internship SE

Reflection of Internship SE

Lector: FH-Prof. Mag. Dr. Beatrix Kuen-Krismer, FH-Prof. Dr. Paul Watson

2SWS
2ECTS

Lecture contents

The internship reflection is divided into 2 parts:
1 Self-reflection of the internship with regard to:
* Topic, structure (organization, laboratory), supervision, working atmosphere/culture, learning content, methods etc.
* Lessons learned
* Group-reflection on the internship and related topics
* Presentation of selected topics concerning the internship
2 The future:
Students are informed about their possible future career prospects and reflect on their strengths and potentials for their next future steps.

Assessment methods

Active participation.

Teaching methods

Activating method
and presenting method

Language

German

22
Developmental Biology VO

Developmental Biology VO

Lector: FH-Prof. Dr. Thomas Czerny

2SWS
3ECTS

Lecture contents

Principles of development (differentiation, growth, pattern formation, induction, morphogenes, cytoplasmic determinants, regulative development, cell fate, cell movement, differential cell adhesion)
Stages of development (early cell division, gastrulation, neurulation, organ development)
Development of important model systems (Drosophila, C. elegans, zebrafish, Xenopus, chick, mouse, evolutionary comparison)
Methods of developmental biology (transplantation, analysis of gene expression, gain-of-function and loss-of-function methods)
Axis determination (organizer, anteroposterior axis - hox genes, dorsoventral axis – Bmp/chordin, left/right axis)
Blood circulation (angiogenesis, hematopoietic system)
Regulation of growth and cancer development
Germ cells and reproduction (gametogenesis, fertilization, in vitro fertilization, cloning)
Regeneration (stem cells, models for regeneration, tissue engineering, aging)

Assessment methods

written exam in the last lecture

Teaching methods

lectures
Powerpoint presentations and down-loads

Language

German

23
Ethics ILV

Ethics ILV

Lector: Dr.in Mary Grace Wallis

1SWS
1ECTS

Lecture contents

The course content / timetable for this semester will be discussed during the first lesson.
See also our Moodle course.

Assessment methods

Performance and progress will be continuously assessed during the semester and will be reflected in the final semester mark. The assessment is based on all written and oral work during the semester. Moreover your active participation in the lessons will also contribute to the overall mark.

Teaching methods

See our Moodle course.

11
Histology VO

Histology VO

Lector: Univ.-Prof. Dr. Adolf Ellinger

2SWS
3ECTS

Lecture contents

Importance of histology for understanding of tissue and organ structure-function relations
Basics of preparation techniques and microscopy
Classification and architecture of tissue types
Connective and supporting-, epithelial-, muscle-, nervous tissue
Structure of organs and organ systems, especially
• Gastrointestinal tract (incl. oral cavity, teeth, liver and pancreas)
• Genito-urinary tract
• Respiratory tract
• Cardiovascular system
• Nervous system
• Endocrine organs
• Lymphatic organs - Immune system
• Skin and appendages
• Sensory organs – exemplary eyeball
Stem- progenitor- indifferent cells (adult, niches)

Assessment methods

Written examination (combination of multiple-choice questions, written anwers / drawings) at the end of the course.

Teaching methods

Lecture (powerpoint, board), online demonstration virtual microscopy, film-sequences. Accompanying script on the web (condensed version of the powerpoint presentations), structuring, extension by lectures, follow up in text books.

Language

German

23
Intercultural Competence ILV

Intercultural Competence ILV

Lector: Barry Jenkins, BSc (Hons)

1SWS
1ECTS

Lecture contents

• What is culture? Definitions and cultural models, cultural identity of the individual, values

• Reasons for misunderstanding in cooperation: self-perception, perception by others

• Stereotypes and prejudices – how can we avoid them?

• Intercultural competence, intercultural strategies

• Culture shock: phases and coping strategies

• Culture dimensions (Trompenaars, Hofstede, Hall, Lewis…etc.)

• Language and communication across cultures - differences regarding style, directness,

context

• Critical incidents in multicultural work; analyses and solutions

• Living and working in a foreign country: Knowledge, behavior, cultural values, working

practices, taboos, Do’s and Dont’s

Assessment methods

• Active participation

• Presentation

• Case studies

Teaching methods

• Short theory inputs

• Presentation in small groups

• Short film sequences

• Exercises, simulation, role-plays

• Discussion

• “Critical incidents”, analysis and solutions

• Reflecting of joint experience

11
Marketing & Product Lifecycle Management ILV

Marketing & Product Lifecycle Management ILV

Lector: Dr. Astrid Christine Erber, Mag. Ramona Lubich, MA

2SWS
2ECTS

Lecture contents

1. Marketing and marketing management, definitions
2. Market research
3. Portfolio Management
4. Marketing strategy: Segmentation, targeting, differentiation and positioning
5. Marketing mix: Product, Price, Place (Distribution) and Promotion (Communication)
6. Presentation case studies and discussion

Assessment methods

The final course grade will be based on the following:
40% Written exam
40% Case study
20% Group work and participation

Teaching methods

Lecture, group work with presentations, case studies

Language

German-English

22
Model Organisms VO

Model Organisms VO

Lector: FH-Prof. Dr. Thomas Czerny

1SWS
2ECTS

Lecture contents

Almost all knowledge on the molecular details of biological pathways originates from research on biomodels. Biomodels have different advantages and strengths and have to be carefully selected depending on the questions asked. In this lecture animal model systems will be discussed in detail. First unicellular, fungal and plant models will be discussed. Then the main animal model systems are presented: vertebrates (fish, frog, chick and mouse) and invertebrates (Drosophila and C. elegans). Various molecular and genetic methods for the analysis of animal models are presented and finally a mouse facility at the VetMed is visited.

Assessment methods

written exam in the last lecture

Teaching methods

lectures
Powerpoint presentations and downloads

Language

German

12
Organic Chemistry LAB

Organic Chemistry LAB

Lector: Dipl.-Ing. Jonas Aronow, Angelika Ebner, Ao.Univ.-Prof. Dipl. Ing. Dr. techn. Wolfgang Holzer, Marlon Millard, BSc, Ao.Univ.-Prof. Dr. Helmut Spreitzer

3SWS
3ECTS

Lecture contents

1. Distillation under atmospheric pressure
2. Distillation under reduced pressure
3. Extraction of an organic acid from an aqueous solution and recrystallization of the crude product
4. Synthesis of ethyl acetoacetate ethylenketal; azeotropic removal of H2O; 1H-and 13C-nmr spectra
5. Synthesis of phenylethanol; NaBH4-reduction
6. Synthesis of the antiepileptic agent phenytoine; benzilic acid rearrangement; synthesis of an
hydantoine
7. Synthesis of Acetylsalicylic acid; acetylation, esterification

Assessment methods

Evaluation is based on laboratory work

Teaching methods

Laboratory course

Language

German

33

Semester dates
Winter semester 2021/22: 1st September 2021 to 4th February 20223
Summer semester 2022: Start 14th February 2022

3 depending on the lab courses

Number of teaching weeks
18 per semester

Times
Monday to Friday all day; some vocational subjects also held on Saturday


How you benefit

Your will receive an education for a growth market. Biotechnology is a key technology of the 21st century that is booming internationally as well as in Austria. In recent years Vienna has become a dynamic center for life sciences. Your career will benefit from the excellent professional reputation of your university and from the practical skills and social skills that you will also acquire during your studies. There is a high demand for well-trained experts with a strong scientific background who can immediately contribute to the success of their company. In addition to excellent career opportunities, a wide range of possible activities will be open to you. Immediately after graduation, you can work as a scientific and technical assistant primarily in research departments and laboratories at global pharmaceutical companies, universities or hospitals. With your extensive know-how of Good Laboratory Practice (GLP), you are an ideal candidate to take on responsibility in project management and quality assurance in the production of medications.

  • Biopharmaceutical industry
  • Industrial biotechnology
  • Food industry
  • Environmental technology
  • University, and other research institutions
  • Hospitals
  • Authorities

Master's degree program

Molecular Biotechnology

Master, full-time

more

Admission

Applicants have to fulfill one of the below mentioned admission requirements, to be able to study at the FH Campus Wien. Either you hold a Higher education entrance qualification or the University entrance qualification examination or already passed the University entrance qualification examination for a study program at the University of Vienna or you can present relevant professional qualifications. However, participation in the admission procedure is mandatory.

You can find more information at on the website of the Federal Ministry for Education, Science and Research

  • Higher education entrance qualification:
    • School leaving certificate from a secondary school or a secondary technical school.
    • Secondary school vocational certificate (Berufsreifeprüfung)
    • Equivalent certification from abroad
      • Equivalence is determined by international agreements or validation. In individual cases the head of the academic section may also recognize the equivalence
  • University entrance qualification examination (Studienberechtigungsprüfung, short SBP)
    The following compulsory subjects of the university entrance qualification for university courses of study are recognized, in addition to an essay on a general topic (D) in accordance with the Act on University Entrance Qualifications (StudBerG) as a prerequisite for admission to this degree program:
    • Biology Level 1
    • Chemistry Level 2
    • Mathematics Level 2 or Physics Level 1
  • University entrance qualification examinations for one of the following university courses of study are recognized as an admission requirement. They were selected based on the subjects defined by the University of Vienna and the university entrance qualification examinations:
    • Natural Sciences: Biology
    • Chemistry
    • Nutritional Sciences
    • Pharmacy
    • UF Biology and Environmental Science
  • Relevant professional qualification with auxiliary examinations
    • You have professional qualifications in the vocational field of "chemistry laboratory assistant and biology technician" (applies for Germany and Switzerland).
    • Necessary additional exams for first Biology and Mathematics, for second Chemistry and Mathematics.

Proof of mandatory additional exams must be provided at the beginning of the semester in which courses are scheduled that require mastery of the subject matter of the additional exam concerned.

It is possible to provide proof of the additional exams or partial exams of the university entrance qualification examinations (SBP) by the end of the first year of study (end of second semester).

Regulation for the admission of third country citizens (PDF, 223 KB)

Information for applicants with non-Austrian (school) certificates (PDF 145 KB)

There are 60 places available in the bachelor's degree program in Molecular Biotechnology each year. The ratio of places to applicants is currently around 1:4

To apply you will require the following documents:

  • Letter of motivation (maximum one page)
  • Fully completed and signed application form
  • Birth certificate
  • Proof of citizenship (Passport, identity card, residence permit, ...)
  • School leaving certificate / university entrance qualification examination / verification of professional qualifications
  • If necessary, the certificate of completion of compulsory military or civil service
  • For those changing degree programs: transcripts of the examinations completed
  • Portrait photo

Registration for the interview:

You will receive the application form (PDF file) in the reply-e-mail. Please sign this document and send a scan to biotechnologie@fh-campuswien.ac.at

After the registration period has ended, you will receive a link via e-mail in order for you to choose a timeslot for your interview (Week 12 the earliest). Please choose an available time slot for participating at the interviews carefully and individually. Please note that the deadline in the respective e-mail. Later changes cannot be taken into consideration.

Please note:
A temporary caching of the online application form is not possible. You must complete your application in one session. Your online application will be accepted once you have submitted all required documents as well as the signed application form scanned per e-mail to biotechnologie@fh-campuswien.ac.at. The university entrance certificate must be submitted after successful completion of the final school examination, at the latest at the beginning of the semester.

Your online application will be accepted when you have uploaded all the required forms and documents. Please also note that you will receive an invitation to the written aptitude test for the admission procedure at the earliest AFTER the application deadline.

After completing your application, you will receive an automatically generated response email. This is your confirmation of the successful application and entitles you to take part in the written aptitude test. All further information for the admission procedure can be found in this e-mail.

Notice: The application documents are checked for completeness. Applicants with incomplete applications will not be considered for the admission procedure. We ask for your understanding that due to organizational and time-related reasons, e-mail inquiries can only be answered to a limited extent during the application phase.

The admission procedure for the academic year 2021/22 will be temporarily changed due to the COVID-19 situation. There will be no written test. Instead, the annual report of the last completed school class will be used for assessment. The interview will be held with an online meeting tool (probably Zoom) and will last 30 minutes.

Former admission procedure, currently not valid:

The admission procedure consists of a written test and an interview with the admission committee.

  • Aim
    The aim is to ensure places are offered to those persons who complete the multi-level admission procedure with the best results. The tests are designed to assess the skills needed for the intended profession.
  • Procedure
    The first part is an entrance test that takes place via the Moodle examination platform. You will complete a multiple choice test to assess your basic knowledge of (molecular) biology, mathematics and chemistry and test your ability to think logically. Test content: The test covers knowledge based on general secondary school (AHS) text books and general knowledge. Questions will cover the basics of mathematics and chemistry (AHS upper level knowledge) and basic knowledge of cell biology. Botany and zoology are not relevant.
    After passing the written admission exam, you will be invited to the second part of the admission procedure at the Campus Vienna BioCenter. An average of 120 applicants are invited to this phase of the admission procedure.

    In the second phase of the admission procedure you will undergo an admission interview to provide a first impression of your personal aptitude. The qualities interviewers are looking for include motivation, performance, problem-solving, a capacity for careful consideration and an understanding of the profession. The test and interview are scored.
  • Criteria
    The criteria for acceptance are based solely on performance. The geographical origin of the applicant or even a re-application has no influence on the admission decision. The admission requirements must be met in all cases. Applicants are evaluated according to the following weighting system:

    • Admission test (60%) and
    • Admission interview (40%)

    The admission committee (which comprises, among others, the head of the academic section and representatives of the teaching staff) awards places to the applicants who score highest in the tests. The process as a whole and all test and assessment results from the admission procedure are documented in a transparent and verifiable manner.

Participation in the selection process is mandatory and cannot be made up for on a separate date.

Waiting List
Based on the number of points achieved in the selection process, you will also be placed on the waiting list. If after the selection process you are put on the waiting list, depending on the number of people who refuse acceptance and the number of places available, it is possible that you will be offered a place in the degree program for the current winter semester. This usually takes place at very short notice and cannot be determined in advance. We ask for your understanding that for organizational reasons no information can be given about your current place on the list and you will be informed immediately if you are offered a place in the degree program.

Rejection by the Degree Program
If you receive a rejection after the selection process, you can reapply for the next winter semester as soon as the application window is open. You will have to apply online again, resubmit all the necessary documents and go through the entire selection process again.

Acceptance
You will be informed by email about the acceptance for a place in the degree program. You will be sent the education and training contract and various regulations by email. You must sign and return the contract by the specified deadline in order to secure and accept your place in the degree program. The invoice for the tuition fee will be sent to you separately from the accounting department. This may take some time. The timetable is expected to be activated one to two weeks BEFORE the start of the semester. All other study-relevant information will either be sent to you by email or you will be given the information during the starting event at the beginning of the academic year.

Rejection by Applicants
If you do not want to or cannot accept your place at the university, we ask you to please inform the office of the degree program as soon as possible via biotechnologie@fh-campuswien.ac.at. Your place will then be assigned to the next in line. Rejection or withdrawal from the education and training contract are only accepted in writing.

Planned start of the first semester (winter semester 2021/22): September 1st 2021

Planned course start for the first semester (winter semester 2021/22): September 13th 2021

Written admission test: 28th to 31st March 2022

Interviews: 27th April to 6th May 2022

Validation and shortening programs

Perhaps your qualifications exceed our admission requirements, you are interested in the possibility of joining the program at a higher semester or you hold a degree from a university abroad?

For more information, please refer to the sections on validation and shortening programs

Shortening the Duration of Studies
For applicants who have a certain amount of knowledge relevant to the course, there is the possibility to start directly in the 3rd semester AFTER passing relevant additional exams.

Under certain conditions, there is the possibility that graduates of the HTL for Chemistry/Rosensteingasse (biochemistry and molecular biotechnology) as well as the private HTL for food technology can enter the third semester directly by means of additional exams and depending on the availability of places in the degree program in the 3rd semester.

To do this, please send an email including your complete university entrance certificate or the report card for your final year of school to biotechnologie@fh-campuswien.ac.at.

The timely submission of the application documents and participation in the admission process is mandatory.

Changing Your Degree Program
Applicants who want to change or are changing their degree program with their application must submit all report cards and certificates in the course of the application. Any crediting of exams must be checked individually and primarily have no effect on the admission procedure.

Studying with disabilities

If you have any questions regarding accessibility or if you have a specific need in the admission procedure due to an impairment, please contact Ursula Weilenmann for organizational reasons as early as possible at barrierefrei@fh-campuswien.ac.at.

Since we try to take into account individual needs due to disabilities when conducting the written admission test, we ask you to indicate in your online application to Weilenmann in which form you require support.

Your contact person in the department Gender & Diversity Management
Mag.a Ursula Weilenmann, Mitarbeiterin
barrierefrei@fh-campuswien.ac.at
http://www.fh-campuswien.ac.at/barrierefrei

 


Contact

Secretary's office

Elisabeth Hablas
Victoria Buchsbaum, MA
Vienna BioCenter
Helmut-Qualtinger-Gasse 2, OG.A.01
1030 Wien
T: +43 1 606 68 77-3500
F: +43 1 606 68 77-3509
biotechnologie@fh-campuswien.ac.at

Map Vienna BioCenter (Google Maps)

Office hours
Mon to Fri, 8.00 a.m.-12.00 p.m.

Information: Application and Admission
biotechnologie@fh-campuswien.ac.at

Mag.a Janina Agis-Blei
Assistance
Vienna BioCenter
Helmut-Qualtinger-Gasse 2, OG.A.03
1030 Wien
T: +43 1 606 68 77-3505
F: +43 1 606 68 77-3509
biotechnologie@fh-campuswien.ac.at

New study location from winter semester 2022/23
The Department of Applied Life Sciences will move to the newly built House of Science & Engineering at Favoritenstraße 222, 1100 Vienna in the summer of 2022.

Teaching staff and research staff

Cooperations and Campusnetzwerk

We work closely with numerous biotech companies, universities, such as the University of Vienna, and research institutes and have a strong international network. This guarantees you strong contacts for your internship, a semester abroad, participation in research and development activities and your future employment. You can find information about our cooperation activities and much more at Campusnetzwerk. It’s well worth visiting the site as it may direct you to a new job or interesting event held by our cooperation partners!

A group of people sitting together at a table having a conversation

Welcome to our Campusnetzwerk

Find suitable job offers, build valuable mentoring relationships and expand your professional network - become part of our community!

Register now for free